Lista 9 Zadanie 1 $$ f(x) = \begin{cases} \frac{e^{7x}-1}{x} & \text{ dla } x≠0\\ 7 & \text{ dla } x =0 \end{cases} $$ $$\lim_{x\rightarrow0^{+-}} \frac{e^{7x} - 1}{x} =\lim_{x\rightarrow0^{+-}} \frac{(e^{7x} - 1)'}{x'}=\lim_{x\rightarrow0^{+-}} \frac{7e^{7x}}{1}=7$$ $$\left(\frac{e^{7x} - 1}{x}\right)'=\frac{(e^{7x} - 1)'x-(e^{7x} - 1)\cdot x'}{x^2}$$ \begin{align*} \lim_{h \to 0} \frac{f(h) - f(0)}{h} &= \lim_{h \to 0} \frac{\frac{e^{7h}-1}{h} - 7}{h}\\ &= \lim_{h \to 0} \frac{e^{7h}-1 - 7 h }{h^2}\\ &= \lim_{h \to 0} \frac{49e^{7h}}{2} = \frac {49}{2} \end{align*}
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up