## Papers
Possible benchmarks, well written and worth mentioning:
- TabDDPM: Modelling Tabular Data with Diffusion Models
- Time-series Generative Adversarial Networks
CTAB-GAN: Effective Table Data Synthesizing
A Review of Tabular Data Synthesis Using GANs on an IDS Dataset
Tabular Transformers for Modeling Multivariate Time Series
CTAB-GAN: Effective Table Data Synthesizing
Modeling Tabular Data using Conditional GAN
Tabular Transformers for Modeling Multivariate Time Series
Conditional Tabular GAN-Based Two-Stage Data Generation Scheme for Short-Term Load Forecasting
TabFairGAN: Fair Tabular Data Generation with Generative
Adversarial Networks
Awesome-timeseries-spatiotemporal-lm-llm#large-language-models-and-foundation-models-llm-lm-fm-for-time-series-and-spatio-temporal-data
https://github.com/qingsongedu/awesome-timeseries-spatiotemporal-lm-llm
## Reviews:
Time-series Generative Adversarial Networks
- autoregressive models for sequence prediction
- GAN-based methods for sequence generation
- time-series representation learning
- Let $S$ be a vector space of static features
- $X$ of temporal features
$P(S,X_{1:t-1})=p(S)\prod_tp(X_t|X_{1:t-1})$

## TabDDPM: Modelling Tabular Data with Diffusion Models
Кажется, TabDDPM дает нормальный план для статьи и бенчмарки по чуть чуть вырисовываются
## TabDDPM: Modelling Tabular Data with Diffusion Models
1. Conditional generation on class or real value quantile (need to think how to avoid leakage in embedding )
2. Time embeddings with SILU?
3. Generated dataset distributions?
4. Privacy analysis - focus on privacy in the сделать более глубокий чем в TABDPPM
(Use a model based approach to find specific users)
Benchmarks:
4. Compare with SMOTE approach / adapt SMOTE for sequences (generation)
5. Compare with Time-series Generative Adversarial Networks (generation + cls)
paper.
6. CoLESS (cls only)




Кажется, TabDDPM дает нормальный план для статьи и бенчмарки по чуть чуть вырисовываются
## TabDDPM: Modelling Tabular Data with Diffusion Models
1. Conditional generation on class or real values quantiles (need to think how to avoid leakage in embedding )
2. Time embeddings with SILU?
3. Generated dataset distributions?
4. Privacy analysis - focus on privacy in the
(Use a model based approach to find specific users)
Benchmarks:
4. Compare with SMOTE approach / adapt SMOTE for sequences (generation)
5. Compare with Time-series Generative Adversarial Networks (generation + cls)
paper.
6. CoLESS (cls only)