# Evaluation results format
###### tags: `Evaluation report`
## Binary
```
{
'per_class':{
'pos_label':{
'precision': float,
'recall': float ,
'f1': float
}
},
'one_class' : {
'confusion_matrix': numpy.ndarray
}
}
```
## Multiclass
```
{
'per_class':{
'label_1':{
'precision': float numpy array, list of precisions,
'recall': float numpy array, list of recalls,
'f1': float numpy array, list of f1 measures
},
'label_2': { . . . },
[ more labels ]
},
'one_class' : {
'confusion_matrix': numpy.ndarray
}
}
```
## Clasificación de imágenes
### Multiclase
```
{
'per_class': {
'label_1': {
'precision': float,
'recall': float,
'f1': float
},
'label_2': { ... },
...
},
'one_class': {
'confusion_matrix': array [n_classes, n_classes],
'precision': float,
'recall': float,
'f1': float
}
}
```
### Binario
```
{
'per_class': {
'pos_class': {
'precision': float,
'recall': float,
'f1': float
}
},
'one_class': {
'confusion_matrix': array, shape = [2, 2]
}
}
```
## Detección de imágenes
### Pascal VOC
```
{
'per_class': {
'label_1': {
'precisions': float numpy array, list of precisions.
'recalls': float numpy array, list of recalls.
'average_precision': float, average precision for each class.
},
'label_2': { ... },
...
},
'one_class': {
'mAP': float, mean average precision of all classes.
}
}
```
### COCO
```
{
'per_class': {
'label_1': {
'Precision/mAP ByCategory/class_n': float,
'Precision/mAP@.50IOU ByCategory/class_n': float,
'Precision/mAP@.75IOU ByCategory/class_n': float,
'Precision/mAP (small) ByCategory/class_n': float,
'Precision/mAP (medium) ByCategory/class_n': float,
'Precision/mAP (large) ByCategory/class_n': float,
'Recall/AR@1 ByCategory/class_n': float,
'Recall/AR@10 ByCategory/class_n': float,
'Recall/AR@100 ByCategory/class_n': float,
'Recall/AR@100 (small) ByCategory/class_n': float,
'Recall/AR@100 (medium) ByCategory/class_n': float,
'Recall/AR@100 (large) ByCategory/class_n': float
},
'label_2': { ... },
...
},
'one_class': {
'Precision/mAP': float,
'Precision/mAP@.50IOU': float,
'Precision/mAP@.75IOU': float,
'Precision/mAP (small)': float,
'Precision/mAP (medium)': float,
'Precision/mAP (large)': float,
'Recall/AR@1': float,
'Recall/AR@10': float,
'Recall/AR@100': float,
'Recall/AR@100 (small)': float,
'Recall/AR@100 (medium)': float,
'Recall/AR@100 (large)': float
}
}
```
### Google Open Images V2
```
{
'per_class': {
'label_1': {
'precisions': float numpy array, list of precisions.
'recalls': float numpy array, list of recalls.
'average_precision': float, average precision for each class.
},
'label_2': { ... },
...
},
'one_class': {
'mAP': float, mean average precision of all classes.
'total_positives': int, total number of ground truth positives.
'total_TP': int, total number of True Positive detections.
'total_FP': int, total number of False Negative detections.
}
}
```
# Formato del parámetro eval_config del método eval
## Clasificación
```
{
'metrics_set': {
'BINARY': {
'labels': list of str,
'pos_label': str or int, default 1
'average': str, default 'binary'
'sample_weight': list or tuple
},
'MULTICLASS': {
'labels': list of str,
'pos_label': str or int, default 1
'average': str, default 'macro'
'sample_weight': list or tuple
}
},
'dataset_partition': None or str,
'eval_dir': str
}
```
## Detección
```
{
'metrics_set': {
'PASCAL_VOC': {
'iou_threshold': float, default 0.5
'nms_iou_threshold': float, default 0.5
'nms_max_output_boxes': int, default 50
'use_weighted_mean_ap': bool, default True
}
},
'dataset_partition': None or str,
'eval_dir': str
}
```