# Evaluation results format ###### tags: `Evaluation report` ## Binary ``` { 'per_class':{ 'pos_label':{ 'precision': float, 'recall': float , 'f1': float } }, 'one_class' : { 'confusion_matrix': numpy.ndarray } } ``` ## Multiclass ``` { 'per_class':{ 'label_1':{ 'precision': float numpy array, list of precisions, 'recall': float numpy array, list of recalls, 'f1': float numpy array, list of f1 measures }, 'label_2': { . . . }, [ more labels ] }, 'one_class' : { 'confusion_matrix': numpy.ndarray } } ``` ## Clasificación de imágenes ### Multiclase ``` { 'per_class': { 'label_1': { 'precision': float, 'recall': float, 'f1': float }, 'label_2': { ... }, ... }, 'one_class': { 'confusion_matrix': array [n_classes, n_classes], 'precision': float, 'recall': float, 'f1': float } } ``` ### Binario ``` { 'per_class': { 'pos_class': { 'precision': float, 'recall': float, 'f1': float } }, 'one_class': { 'confusion_matrix': array, shape = [2, 2] } } ``` ## Detección de imágenes ### Pascal VOC ``` { 'per_class': { 'label_1': { 'precisions': float numpy array, list of precisions. 'recalls': float numpy array, list of recalls. 'average_precision': float, average precision for each class. }, 'label_2': { ... }, ... }, 'one_class': { 'mAP': float, mean average precision of all classes. } } ``` ### COCO ``` { 'per_class': { 'label_1': { 'Precision/mAP ByCategory/class_n': float, 'Precision/mAP@.50IOU ByCategory/class_n': float, 'Precision/mAP@.75IOU ByCategory/class_n': float, 'Precision/mAP (small) ByCategory/class_n': float, 'Precision/mAP (medium) ByCategory/class_n': float, 'Precision/mAP (large) ByCategory/class_n': float, 'Recall/AR@1 ByCategory/class_n': float, 'Recall/AR@10 ByCategory/class_n': float, 'Recall/AR@100 ByCategory/class_n': float, 'Recall/AR@100 (small) ByCategory/class_n': float, 'Recall/AR@100 (medium) ByCategory/class_n': float, 'Recall/AR@100 (large) ByCategory/class_n': float }, 'label_2': { ... }, ... }, 'one_class': { 'Precision/mAP': float, 'Precision/mAP@.50IOU': float, 'Precision/mAP@.75IOU': float, 'Precision/mAP (small)': float, 'Precision/mAP (medium)': float, 'Precision/mAP (large)': float, 'Recall/AR@1': float, 'Recall/AR@10': float, 'Recall/AR@100': float, 'Recall/AR@100 (small)': float, 'Recall/AR@100 (medium)': float, 'Recall/AR@100 (large)': float } } ``` ### Google Open Images V2 ``` { 'per_class': { 'label_1': { 'precisions': float numpy array, list of precisions. 'recalls': float numpy array, list of recalls. 'average_precision': float, average precision for each class. }, 'label_2': { ... }, ... }, 'one_class': { 'mAP': float, mean average precision of all classes. 'total_positives': int, total number of ground truth positives. 'total_TP': int, total number of True Positive detections. 'total_FP': int, total number of False Negative detections. } } ``` # Formato del parámetro eval_config del método eval ## Clasificación ``` { 'metrics_set': { 'BINARY': { 'labels': list of str, 'pos_label': str or int, default 1 'average': str, default 'binary' 'sample_weight': list or tuple }, 'MULTICLASS': { 'labels': list of str, 'pos_label': str or int, default 1 'average': str, default 'macro' 'sample_weight': list or tuple } }, 'dataset_partition': None or str, 'eval_dir': str } ``` ## Detección ``` { 'metrics_set': { 'PASCAL_VOC': { 'iou_threshold': float, default 0.5 'nms_iou_threshold': float, default 0.5 'nms_max_output_boxes': int, default 50 'use_weighted_mean_ap': bool, default True } }, 'dataset_partition': None or str, 'eval_dir': str } ```