# mont mul
<!-- by a const -->
## setup
- N := 2^384
- p is the prime number for the field
- R := N % p
conver integer $a$ to its montgomery form:
$$\texttt{mont}(a) = a * R % N$$
Task: input $\texttt{mont}(a)$ a variable, and $c:= 9$ (or 3, or 12) is a constant, compute $d := a * c$ and output $\texttt{mont}(d)$.
<!-- ## option 1: convert constant to mont
trivial.
## option 2:
-->
\begin{align}
\texttt{mont}(d) &:= d * R \bmod N \\
&= c * a * R \bmod N \\
&= c * (a * R \bmod N) \bmod N \\
&= c * \texttt{mont}(a) \bmod N
\end{align}