# mont mul <!-- by a const --> ## setup - N := 2^384 - p is the prime number for the field - R := N % p conver integer $a$ to its montgomery form: $$\texttt{mont}(a) = a * R % N$$ Task: input $\texttt{mont}(a)$ a variable, and $c:= 9$ (or 3, or 12) is a constant, compute $d := a * c$ and output $\texttt{mont}(d)$. <!-- ## option 1: convert constant to mont trivial. ## option 2: --> \begin{align} \texttt{mont}(d) &:= d * R \bmod N \\ &= c * a * R \bmod N \\ &= c * (a * R \bmod N) \bmod N \\ &= c * \texttt{mont}(a) \bmod N \end{align}