# $T(n) = 2T(n/2) + O(n\log^2{n}\log\log{n})$ This always comes up. Without loss of generality, let $n=2^k$ so $k=\log{n}$. Then: \begin{align} T(2^k) &= 2T(2^{k-1}) + O(2^k\log^2{(2^k)}\log\log{2^k})\\ &= 2T(2^{k-1}) + O(2^k k^2\log{k})\\ &= 2\left(2T(2^{k-2}) + O\left(2^{k-1} {(k-1)}^2\log{(k-1)}\right)\right) + O(2^k k^2\log{k})\\ % Note: Does not fit % &= 2\left(2\left(2T(2^{k-3}) + O\left(2^{k-2} {(k-2)}^2\log{(k-2)}\right)\right) + O\left(2^{k-1} {(k-1)}^2\log{(k-1)}\right)\right) + O(2^k k^2\log{k})\\ &= \dots\\ &= 2^k O(1) + \sum_{i=0}^k O\left(2^{k} {i}^2\log{i}\right)\\ &= O(2^k) + \sum_{i=1}^k O\left(2^{k} {i}^2\log{i}\right)\\ &\le O(2^k) + k \cdot O\left(2^{k} {k}^2\log{k}\right)\\ &\le O(2^k) + O\left(2^{k} {k}^3\log{k}\right)\\ &=O(n) + O(n\log^3{n}\log{\log{n}}) \end{align}