Try   HackMD

T(n)=2T(n/2)+O(nlog2nloglogn)

This always comes up.

Without loss of generality, let

n=2k so
k=logn
.

Then:

T(2k)=2T(2k1)+O(2klog2(2k)loglog2k)=2T(2k1)+O(2kk2logk)=2(2T(2k2)+O(2k1(k1)2log(k1)))+O(2kk2logk)==2kO(1)+i=0kO(2ki2logi)=O(2k)+i=1kO(2ki2logi)O(2k)+kO(2kk2logk)O(2k)+O(2kk3logk)=O(n)+O(nlog3nloglogn)