---
tags: category theory, anders kock, monads
---
$\newcommand{\sem}[1]{[\![#1]\!]}$
# Monoidal, Commutative and Double Dualization Monads
As introduced by Anders Kock:

[4] refers to

[3] refers to

See also the more recent

# References
Anders Kock [homepage](https://users-math.au.dk/kock/)
- Strong functors and monoidal monads Arch.Math. (Basel) 23 (1972), 113-120. http://tildeweb.au.dk/au76680/SFMM.pdf
- On double dualization monads, Math. Scand. 27 (1970), 151-165. http://tildeweb.au.dk/au76680/DD.pdf
- Closed categories generated by commutative monads, J. Austral. Math. Soc. 12 (1971), 405-424. http://tildeweb.au.dk/au76680/CCGBCM.pdf
- Monads on symmetric monoidal closed categories, Archiv.Math. (Basel) 21 (1970), 1-9. http://tildeweb.au.dk/au76680/MSMCC.pdf
- Commutative monads as a theory of distributions. Theory and Applications of Categories, Vol. 26, 2012, No. 4, pp 97-131. http://www.tac.mta.ca/tac/volumes/26/4/26-04.pdf
Further References:
- Francois Metayer [State monads and their algebras](https://arxiv.org/pdf/math/0407251.pdf)
- Marcelo Fiore, [An Equational Metalogic for Monadic Equational Systems](https://arxiv.org/abs/1309.4821), 2013.
- Mathoverflow: [What are the algebras for the double dualization monad?](https://mathoverflow.net/questions/104777/what-are-the-algebras-for-the-double-dualization-monad), 2004