<style type="text/css">
.reveal ul {
display: block;
}
.reveal ol {
display: block;
}
.reveal {
font-size: 36px;
}
.reveal p {
text-align: left;
margin-top: 25px;
margin-bottom: 25px; /* Adjust the value as needed */
}
.custom-space {
display: block;
margin-top: 50px; /* Less space than <br> */
}
.reveal h1, .reveal h2, .reveal h3, .reveal h4, .reveal h5, .reveal h6 {
text-transform: none; /* no forced upper case in headings*/
}
.reveal .slides section h1:after, /* not doing much*/
.reveal .slides section h2:after,
.reveal .slides section h3:after
{
content: '';
flex-grow: 1; /* This will make the pseudo-element grow */
display: block; /* Converts the pseudo-element to a block, allowing it to be sized */
}
</style>
## The Blacktriangle Calculus
<br>
#### 1st GALAI Workshop, Jan 26, 2024
<br>
###### Alexander Kurz
###### Chapman University
<br>
###### in collaboration with Apostolos Tzimoulis (Vrije Universiteit van Amsterdam)
<br>
---
### Complete Lattices
Relation $p:X\times A\to 2$.
$p^\uparrow:\mathcal DX\to\mathcal UA$, $p^\uparrow(\phi)=\{a\in A \mid \forall x\in\phi\,.\, p(x,a)\}$
$p^\downarrow:\mathcal UA\to\mathcal DX$, $p^\downarrow(\psi)=\{x\in X \mid \forall a\in\psi\,.\, p(x,a) \}$
<span class="custom-space"></span>
Rewrite this as
$p^\uparrow(\phi)=\bigwedge_x (\phi(x)\Rightarrow p(x,-)) = \phi\blacktriangleright p$
$p^\downarrow(\psi)=\bigwedge_a(\psi(a)\Rightarrow p(-,a)) = p\blacktriangleleft \psi$
---
### Complete Lattices (2)
<span class="custom-space"></span>
**Example:** Let $X=\{x_1,x_2,x_3\}$ and $A=\{a_1,a_2,a_3\}$ and $p=\{(x_1,a_1),(x_2,a_1), (x_2,a_2), (x_3,a_3)\}$
Order $\mathcal DX$ by inclusion and $\mathcal UA$ by reverse inclusion.
**Fact:** $p^\uparrow\dashv p^\downarrow$. Hence, $p^\uparrow p^\downarrow$ and $p^\downarrow p^\uparrow$ are closure operators.
The **MacNeille completion** of $p$ is the set $\mathcal P$ of all $(\phi,\psi)$ with
$$\phi=p^\downarrow \psi \quad\quad p^\uparrow\phi=\psi$$
---
## Enriching over a Quantale
<span class="custom-space"></span>
**Example**: The Lawvere Quantale.
**Example**: The quantale of all languages.
**Example**: The quantale of all binary relations on a set.
**Example**: Relational presheaves for an arbitrary quantale.
<span class="custom-space"></span>
An **$\Omega$-space** is a category enriched over a quantale $\Omega$.
---
## Non-Commutative Quantales
<span class="custom-space"></span>
Let $\Omega$ be a quantale.
Define $\Omega^o$ to be $\Omega$ with reverse multiplication.
For an $\Omega$-space $X$ define $X^o(x,y) = X(y,x)$.
**Fact:** $\ X^o$ is $\Omega^o$-enriched iff $X$ is $\Omega$-enriched.
An **$\Omega$-relation** $R: X\looparrowright A$ is a function $X\times A\to\Omega$ s.t.
$$X(x',x)\cdot R(x,y)\le R(x',y)$$
$$R(x,y)\cdot Y(y,y')\le R(x,y')$$
<font size=5pt color=grey>(aka bimodule, profunctor, distributor, weakening relation, monotone relation, ...)
</font>
---
## Many-Valued Relations
<br>
Composition of $\Omega$-relations has both residuals
$$R\bullet - \ \dashv\ R\blacktriangleright - \quad\quad\quad - \bullet S\ \dashv \ -\blacktriangleleft S$$
which implies
\begin{gather}
R\bullet (R\blacktriangleright T) \,\le \, T
\quad\quad
T\le R\blacktriangleright (R\bullet T)
\\[1ex]
(T\blacktriangleleft S)\bullet S \,\le\, T
\quad\quad
T \,\le\, (T\bullet R)\blacktriangleleft R
\end{gather}
---
## Fuzzy Downsets and Upsets
<span class="custom-space"></span>
The elements of $\mathcal DX$ are $\Omega$-relations $X\looparrowright 1$ with homs
$$\mathcal DX(\phi',\phi)=\phi'\blacktriangleright\phi =\bigwedge_{x\in X} (\phi' x\rhd \phi x)$$
The elements of $\mathcal UA$ are $\Omega$-relations $1\looparrowright A$ with homs
$$\mathcal UA(\psi,\psi')=\psi \blacktriangleleft \psi'=\bigwedge_{a\in A} (\psi a\lhd \psi' a)$$
---
## The Blacktriangle Calculus
<span class="custom-space"></span>
$$(\phi\blacktriangleright p)\blacktriangleleft \psi = \phi\blacktriangleright (p \blacktriangleleft \psi)$$
$$X(-,x)\blacktriangleright p = p(x,-)$$
$$p \blacktriangleleft A(a,-) = p(-,a)$$
$$(p\blacktriangleleft p(x,-)) \blacktriangleright p=p(x,-)$$
$$p\blacktriangleleft (p(-,a) \blacktriangleright p)=p(-,a)$$
---
## The MacNeille Insertion
<span class="custom-space"></span>
$$\overline\ : X+A\to \mathcal P$$
<span class="custom-space"></span>
$$\mathcal P(\overline x,\overline a) = p(x,a)$$
$$\mathcal P(\overline a, \overline a') = p(-,a)\blacktriangleright p(-,a')$$
$$\mathcal P(\overline x,\overline x') = p(x,-)\blacktriangleleft p(x',-)$$
$$\mathcal P(\overline a,\overline x) = p(-,a) \blacktriangleright p\blacktriangleleft p(x,-)$$
---
## The MacNeille Yoneda Lemma
<br>
\begin{gather}
\mathcal P(\overline x, (\phi,\psi)) = p(x,-)\blacktriangleleft\psi = \phi(x)\\
\mathcal P(\overline a, (\phi,\psi)) = \phi\blacktriangleright p(-,a) = \psi(a)
\end{gather}
---
## Weighted (Co)Limit Completion
<span class="custom-space"></span>
The colimit of $\ \overline\ :X\to\mathcal P$ weighted by $\phi$ is the upset of $\phi$
$$(p\blacktriangleleft (\phi\blacktriangleright p),\phi\blacktriangleright p)$$
<span class="custom-space"></span>
The limit of $\ \overline\ :A\to\mathcal P$ weighted by $\psi$ is the downset of $\psi$
$$(p\blacktriangleleft \psi,(p\blacktriangleleft \psi)\blacktriangleright p)$$
<span class="custom-space"></span>
**Corollary:** $\mathcal P$ is complete. Moreover, every $(\phi,\psi)\in\mathcal P$ is
- the colimit of $X\to\mathcal P$ weighted by $\phi$,
- the limit of $X\to\mathcal P$ weighted by $\psi$.
---
## Questions?
---
## Appendix
\begin{gather}
\tiny
(\phi\blacktriangleright p)(a)=\bigwedge_x (\phi(x)\rhd p(x,a))\\
\tiny
(p\blacktriangleleft\psi)(x)=\bigwedge_a (p(x,a)\lhd \psi(a))\\
\tiny
\psi\bullet C(-,c) = \psi(c) \\
\tiny
C(c,-)\bullet\phi = \phi(c) \\
\end{gather}
{"title":"The Blacktriangle Calculus (Slides)","slideOptions":"{\"theme\":\"white\",\"transition\":\"fade\",\"transitionSpeed\":\"slow\",\"spotlight\":{\"enabled\":false},\"controls\":false}","description":"Boolean Algebras — Stone spaces","contributors":"[{\"id\":\"d215bc36-9464-43c8-81b4-4d58ae2c492a\",\"add\":8978,\"del\":2777}]"}