# Cocommas in quantale enriched categories Let $\Omega$ be a quantale. **Cocommas in Posets** If $\Omega=2$, then a cocomma of a span $$A \stackrel{p}{\longleftarrow} B \stackrel{q}{\longrightarrow} C$$ is the colimit weighted by - $\phi(A)=\phi(C)=1=\{0\}$ and - $\phi(B)=\{0<1\}$ and - $\phi(p)(0)=0$ and - $\phi(q)(0)= 1$. Explicitely, the cocomma is the disjoint union $D=A+C$ with - $D(a,c) = \textsf{ if } \exists b(a=pb\wedge c=pb) \textsf{ then } 1 \textsf{ else } 0$ - $D(c,a)=0$ - $D(a,a') = A(a,a')$ - $D(c,c') = C(c,c')$ **Cocommas in Quantale enriched categories** In principle, there could be more than one way to define the weight of $B$. But the following seems the obvious generalisation of the poset case. Modify the definition of the poset case so that $\phi(B)= \{0,1\}$ with |$x$ | $y$ |$\phi(B)(x,y)$| |:---:|:---:|:---:| |0|0| $e$| |0|1| $e$| |1|0| $\bot$ | |1|1| $e$| Then the cocomma of $A \stackrel{p}{\longleftarrow} B \stackrel{q}{\longrightarrow} C$ is the disjoint union $D=A+C$ with - $D(a,c) = \textsf{ if } \exists b(a=pb\wedge c=pb) \textsf{ then } e \textsf{ else } \bot$ - $D(c,a)= \bot$ - $D(a,a') = A(a,a')$ - $D(c,c') = C(c,c')$ **Composing cospans of automata** If $\Omega$ is the powerset of the free monoid over an alphabet $\Sigma$, then a cospan of $\Omega$-categories is a non-determinstic automaton in which transitions are labelled not with symbols from $\Sigma$ but with languages over $\Sigma$. While composing these cospans via pushouts corresponds to glueing final and initial states, composing via cocommas corresponds to inserting $\epsilon$-transitions between final states and initial states (labelled with the same symbol from $B$).