# Extension of L'hôpital's Rule ###### tags: `Calculus` ## Estimate Derivative $$ f'(x)=\lim_{h\rightarrow0}\frac{f(x+h)-f(x)}h\approx\frac{f(x+h)-f(x)}h\\if\;f''(x)\;is\;continuous\\f''(x)=\lim_{h\rightarrow0}\frac{f(x+h)+f(x-h)-2f(x)}{h^2} $$ #### <Proof> $$ \lim_{h\rightarrow0}\frac{f(x+h)+f(x-h)-2f(x)}{h^2}\overset{L'H}=\lim_{h\rightarrow0}\frac{f'(x+h)-f'(x-h)}{2h}\\\overset{L'H}=\lim_{h\rightarrow0}\frac{f''(x+h)+f''(x-h)}2=f''(x) $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up