## 提示格式 根據使用的語言模型不同,使用不同的格式來下指令可以得到更好的結果,akasha目前提供 ***gpt***, ***llama***, ***chat_gpt***, ***chat_mistral***等格式 #### gpt ```text! prompt_format = System: {system_prompt} \n\n {history_messages} \n\n Human: {prompt} ``` #### llama ```text! prompt_format = [INST] <<SYS>> {system_prompt} \n\n <<SYS>> {history_messages} \n\n {prompt} [\INST] ``` #### chat_gpt ```text! prompt_format = [{"role":"system", "content": {system_prompt} }, {"role":"user", "content": {history msg1}}, {"role":"assistant", "content": {history msg2}}, . . . {"role":"user", "content": {prompt}} ``` #### chat_mistral ```text! prompt_format = [{"role":"user", "content": "start conversation" }, {"role":"assistant", "content": {system_prompt}}, {"role":"user", "content": {history msg1}}, {"role":"assistant", "content": {history msg2}}, . . . {"role":"user", "content": {prompt}} ``` ### Example ```python!= import akasha sys_prompt = "請用中文回答" prompt = "五軸是甚麼?" qa = akasha.Doc_QA( verbose=False, search_type="svm", model="openai:gpt-3.5-turbo") response = qa.get_response( doc_path="docs/mic/", prompt=prompt, prompt_format_type="chat_gpt", system_prompt=sys_prompt, ) ``` ### Example2 ```python!= import akasha sys_prompt = "請用中文回答" prompt = "五軸是甚麼?" input_text = akasha.prompts.format_sys_prompt(sys_prompt,prompt,"chat_gpt") model_obj = akasha.handle_model("openai:gpt-3.5-turbo",False,0.0) response = akasha.call_model(model_obj, input_text) ```