## FAST API akasha 提供get_response, ask_self, ask_whole_file, get_summary的api server ### 啟動 ```bash!= akasha api (–port {port} –host {host} –workers {num_of_workers}) ``` ### Example ```python!= import requests import os HOST = os.getenv("API_HOST", "http://127.0.0.1") PORT = os.getenv("API_PORT", "8000") urls = { "summary": f"{HOST}:{PORT}/get_summary", "qa": f"{HOST}:{PORT}/get_response", "self": f"{HOST}:{PORT}/ask_self", "file": f"{HOST}:{PORT}/ask_whole_file", } openai_config = { "azure_key": {your api key}, "azure_base": {your api base}, } self_data = { "prompt": "太陽電池技術?", "info": "太陽能電池技術5塊錢", "model": "openai:gpt-3.5-turbo", "system_prompt": "", "max_doc_len": 1500, "temperature": 0.0, "openai_config": openai_config } file_data = { "doc_path": "docs/mic/20230317_5軸工具機因應市場訴求改變的發展態勢.pdf", "prompt": "五軸是什麼?", "chunk_size": 1000, "model": "openai:gpt-3.5-turbo", "embedding_model": "openai:text-embedding-ada-002", "system_prompt": "", "max_doc_len": 1500, "temperature": 0.0, "openai_config": openai_config } chat_data = { "doc_path": "docs/pns/", "prompt": "太陽電池技術?", "chunk_size": 1000, "model": "openai:gpt-3.5-turbo", "embedding_model": "openai:text-embedding-ada-002", "threshold": 0.1, "search_type": 'auto', "system_prompt": "", "max_doc_len": 1500, "temperature": 0.0, "openai_config": openai_config } summary_data = { "file_path": "docs/pns/2484.txt", "model": "openai:gpt-3.5-turbo", "summary_type": "reduce_map", "summary_len": 500, "system_prompt": "", "openai_config": openai_config } # chat_response = requests.post(urls["qa"], json=chat_data).json() # print(chat_response) # sum_response = requests.post( # urls["summary"], # json=summary_data, # ).json() # print(sum_response) self_response = requests.post(urls["self"], json=self_data).json() print(self_response) file_response = requests.post(urls["file"], json=file_data).json() print(file_response) ```