# Soal sigma 1B ###### tags: `math` `sigma` ## Soal $$ sederhanakan \sum_{a=2}^{10}({a}^{3}+1)+\sum_{a=2}^{10}({a}^{2}+1) $$ ## Penyelesaian dari sifat $$ \sum_{i=1+p}^{n+p}(U_{i-p}) $$ maka : $$ \sum_{a=2}^{10}({a}^{3}+1) = \sum_{a=2}^{10}U_{a} = \sum_{a=1+1}^{9+1}(U_{a-1}) $$ $$ U_{a}={a}^{3}+1 $$ $$ U_{a-1}={(a-1)}^{3}+1 $$ berarti : $$ \sum_{a=2}^{10}({a}^{3}+1)=\sum_{a=1+1}^{9+1}U_{a-1}=\sum_{a=1}^{9}U_{a-1}=\sum_{a=1}^{9}({(a-1)}^{3}+1) $$ begitu juga yg sigma satunya $$ \sum_{a=2}^{10}({a}^{2}+1) = \sum_{a=2}^{10}U_{a} = \sum_{a=1+1}^{9+1}(U_{a-1}) $$ $$ U_{a}={a}^{2}+1 $$ $$ U_{a-1}={(a-1)}^{2}+1 $$ berarti : $$ \sum_{a=2}^{10}({a}^{2}+1)=\sum_{a=1+1}^{9+1}U_{a-1}=\sum_{a=1}^{9}U_{a-1}=\sum_{a=1}^{9}({(a-1)}^{2}+1) $$ dari sifat : $$ \sum_{i=1}^{n}(U_i+V_i)=\sum_{i=1}^{n}U_i+\sum_{i=1}^{n}V_i $$ maka: $$ \sum_{a=2}^{10}({a}^{3}+1)+\sum_{a=2}^{10}({a}^{2}+1) $$ $$ =\sum_{a=1}^{9}({(a-1)}^{3}+1)+\sum_{a=1}^{9}({(a-1)}^{2}+1) $$ $$ =\sum_{a=1}^{9}({(a-1)}^{3}+1+{(a-1)}^{2}+1) $$ $$ =\sum_{a=1}^{9}({(a-1)}^{3}+{(a-1)}^{2}+2) $$ ## Jawaban jadi bentuk sederhananya adalah : $$ \sum_{a=2}^{10}({a}^{3}+1)+\sum_{a=2}^{10}({a}^{2}+1)=\sum_{a=1}^{9}({(a-1)}^{3}+{(a-1)}^{2}+2) $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up