# Agentic AI Resources A curated collection of resources on Agentic AI, organized by category. --- ## 📚 NVIDIA Learning Courses :::spoiler Building Agentic AI Applications (C-FX-25) **Link:** https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+C-FX-25+V1 **Notes:** - - ::: :::spoiler Agentic AI Development (S-FX-15) **Link:** https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-15+V1 **Notes:** - - ::: :::spoiler Advanced Agentic AI (S-FX-32) **Link:** https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-32+V1 **Notes:** - - ::: :::spoiler AI Infrastructure Course (C-FX-18) **Link:** https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+C-FX-18+V1 **Notes:** - - ::: :::spoiler LLM Development (C-FX-26) **Link:** https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+C-FX-26+V1 **Notes:** - - ::: :::spoiler Foundation Models (C-FX-15) **Link:** https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+C-FX-15+V1 **Notes:** - - ::: --- ## 🏭 NVIDIA Documentation & Whitepapers :::spoiler Agentic AI in the Factory **Link:** https://docs.nvidia.com/ai-enterprise/planning-resource/ai-factory-white-paper/latest/agentic-ai-in-the-factory.html **Notes:** - - ::: :::spoiler Triton Inference Server Optimization **Link:** https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/optimization.html **Notes:** - - ::: :::spoiler NVIDIA AIQ Toolkit Documentation **Link:** https://docs.nvidia.com/aiqtoolkit/latest/index.html **Notes:** - - ::: :::spoiler AIQ Toolkit Tutorials **Link:** https://docs.nvidia.com/aiqtoolkit/latest/tutorials/index.html **Notes:** - - ::: :::spoiler AIQ Toolkit FAQ **Link:** https://docs.nvidia.com/aiqtoolkit/latest/resources/faq.html **Notes:** - - ::: :::spoiler NeMo Agent Toolkit Quick Start **Link:** https://docs.nvidia.com/nemo/agent-toolkit/1.1/quick-start/launching-ui.html **Notes:** - Go through this page and subpages Completely at a very high level - https://docs.nvidia.com/nemo/agent-toolkit/latest/index.html ::: :::spoiler TensorRT Best Practices **Link:** https://docs.nvidia.com/deeplearning/tensorrt/latest/performance/best-practices.html **Notes:** - - ::: :::spoiler Triton Dynamic Batching **Link:** https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/batcher.html **Notes:** - - ::: :::spoiler Triton Backend Documentation **Link:** https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/backend/README.html **Notes:** - - ::: :::spoiler NeMo Framework Performance Guide **Link:** https://docs.nvidia.com/nemo-framework/user-guide/latest/performance/performance-guide.html **Notes:** - - ::: :::spoiler NeMo Data Curation Best Practices **Link:** https://docs.nvidia.com/nemo-framework/user-guide/latest/datacuration/bestpractices.html **Notes:** - - ::: :::spoiler NeMo RL Documentation **Link:** https://docs.nvidia.com/nemo/rl/latest/index.html **Notes:** - - ::: :::spoiler GPU Telemetry with Kubernetes **Link:** https://docs.nvidia.com/datacenter/cloud-native/gpu-telemetry/latest/kube-prometheus.html **Notes:** - - ::: :::spoiler Run:AI NIM Inference **Link:** https://docs.run.ai/v2.20/Researcher/workloads/inference/nim-inference/ **Notes:** - - ::: --- ## 🛠️ NVIDIA Developer Blog Posts :::spoiler Building Autonomous AI with NVIDIA Agentic NeMo **Link:** https://medium.com/@zbabar/building-autonomous-ai-with-nvidia-agentic-nemo-e2992ae58cea **Notes:** - - ::: :::spoiler AI Virtual Assistants with NIM Agent Blueprint **Link:** https://developer.nvidia.com/blog/three-building-blocks-for-creating-ai-virtual-assistants-for-customer-service-with-an-nvidia-nim-agent-blueprint/ **Notes:** - - ::: :::spoiler Introduction to LLMs and Prompt Engineering **Link:** https://developer.nvidia.com/blog/an-introduction-to-large-language-models-prompt-engineering-and-p-tuning/ **Notes:** - - ::: :::spoiler Measure AI Workload Performance with DGX Cloud **Link:** https://developer.nvidia.com/blog/measure-and-improve-ai-workload-performance-with-nvidia-dgx-cloud-benchmarking/ **Notes:** - - ::: :::spoiler Scaling LLMs with Triton and TensorRT-LLM **Link:** https://developer.nvidia.com/blog/scaling-llms-with-nvidia-triton-and-nvidia-tensorrt-llm-using-kubernetes/ **Notes:** - - ::: :::spoiler Jamba 1.5 Hybrid Architecture **Link:** https://developer.nvidia.com/blog/jamba-1-5-llms-leverage-hybrid-architecture-to-deliver-superior-reasoning-and-long-context-handling **Notes:** - - ::: :::spoiler Mastering LLM Inference Optimization **Link:** https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/ **Notes:** - - ::: :::spoiler AI Agents Blueprint Overview **Link:** https://blogs.nvidia.com/blog/ai-agents-blueprint/ **Notes:** - - ::: :::spoiler Improve AI Code Generation with AIQ Toolkit **Link:** https://developer.nvidia.com/blog/improve-ai-code-generation-using-nvidia-agent-intelligence-toolkit/ **Notes:** - - ::: :::spoiler Monitoring ML Models in Production **Link:** https://developer.nvidia.com/blog/a-guide-to-monitoring-machine-learning-models-in-production **Notes:** - - ::: :::spoiler Building Safer LLM Apps with NeMo Guardrails **Link:** https://developer.nvidia.com/blog/building-safer-llm-apps-with-langchain-templates-and-nvidia-nemo-guardrails/ **Notes:** - - ::: :::spoiler Securing Generative AI with NIM and Guardrails **Link:** https://developer.nvidia.com/blog/securing-generative-ai-deployments-with-nvidia-nim-and-nvidia-nemo-guardrails/ **Notes:** - - ::: --- ## 🧰 NVIDIA Tools & Products :::spoiler NVIDIA NeMo Guardrails **Link:** https://developer.nvidia.com/nemo-guardrails **Notes:** - - ::: :::spoiler NeMo Agent Toolkit **Link:** https://developer.nvidia.com/nemo-agent-toolkit **Notes:** - - ::: :::spoiler Agent Intelligence Toolkit **Link:** https://developer.nvidia.com/agent-intelligence-toolkit **Notes:** - - ::: :::spoiler NVIDIA Nsight Systems **Link:** https://developer.nvidia.com/nsight-systems **Notes:** - - ::: :::spoiler NVIDIA AI Overview **Link:** https://www.nvidia.com/en-us/ai/ **Notes:** - - ::: :::spoiler NVIDIA NeMo Platform **Link:** https://www.nvidia.com/en-us/ai-data-science/products/nemo/ **Notes:** - - ::: :::spoiler NVIDIA Learning Contact **Link:** https://www.nvidia.com/en-us/learn/organizations/contact-us/ **Notes:** - - ::: --- ## 📦 GitHub Repositories :::spoiler NeMo Agent Toolkit Repository **Link:** https://github.com/NVIDIA/NeMo-Agent-Toolkit **Notes:** - - ::: :::spoiler TensorRT-LLM Repository **Link:** https://github.com/NVIDIA/TensorRT-LLM **Notes:** - - ::: :::spoiler NeMo Guardrails Repository **Link:** https://github.com/NVIDIA/NeMo-Guardrails **Notes:** - - ::: :::spoiler AIQ Toolkit Repository **Link:** https://github.com/NVIDIA/AIQToolkit **Notes:** - - ::: :::spoiler NeMo Framework Repository **Link:** https://github.com/NVIDIA/NeMo **Notes:** - - ::: --- ## 📊 TensorRT-LLM Documentation :::spoiler TensorRT-LLM Performance Analysis **Link:** https://nvidia.github.io/TensorRT-LLM/performance/perf-analysis.html **Notes:** - - ::: :::spoiler TensorRT-LLM Troubleshooting **Link:** https://nvidia.github.io/TensorRT-LLM/reference/troubleshooting.html **Notes:** - - ::: --- ## 📖 Glossary & Concepts :::spoiler Multi-Agent Systems **Link:** https://www.nvidia.com/en-us/glossary/multi-agent-systems/ **Notes:** - - ::: :::spoiler Kubernetes Overview **Link:** https://www.nvidia.com/en-us/glossary/kubernetes/ **Notes:** - - ::: :::spoiler Data Flywheel Concept **Link:** https://www.nvidia.com/en-us/glossary/data-flywheel/ **Notes:** - - ::: --- ## 📝 Research Papers (arXiv) :::spoiler Multi-Agent Framework Paper **Link:** https://arxiv.org/abs/2502.05439 **Notes:** - - ::: :::spoiler Agent Performance Evaluation **Link:** https://arxiv.org/abs/2310.10501 **Notes:** - - ::: :::spoiler Agent Memory Systems **Link:** https://arxiv.org/abs/2402.02716 **Notes:** - - ::: :::spoiler Advanced Agentic AI Design **Link:** https://arxiv.org/html/2504.15965v1 **Notes:** - - ::: --- ## 💼 Industry Applications & Case Studies :::spoiler Oracle: Agentic AI Overview **Link:** https://www.oracle.com/artificial-intelligence/agentic-ai/ **Notes:** - - ::: :::spoiler Financial Fraud Detection with Multi-Agent Framework **Link:** https://medium.com/@mariaprokofieva/catch-me-if-you-can-a-multi-agent-framework-for-financial-fraud-detection-03faa7caba7c **Notes:** - - ::: :::spoiler Design Considerations for Real-World Agentic AI **Link:** https://medium.com/@official.indrajit.kar/design-considerations-of-advanced-agentic-ai-for-real-world-applications-c5ef317ba1e1 **Notes:** - - ::: --- ## ⚠️ Challenges & Best Practices :::spoiler Top 5 Agentic AI Challenges (Confluent) **Link:** https://www.confluent.io/blog/agentic-ai-the-top-5-challenges-and-how-to-overcome-them/ **Notes:** - - ::: :::spoiler 5 Common Pitfalls in Agentic AI Adoption **Link:** https://www.captechconsulting.com/articles/navigating-the-challenges-5-common-pitfalls-in-agentic-ai-adoption **Notes:** - - ::: :::spoiler AI Agents in Production (Microsoft) **Link:** https://microsoft.github.io/ai-agents-for-beginners/10-ai-agents-production/ **Notes:** - - ::: --- ## ☁️ Azure Architecture Patterns :::spoiler Transient Fault Handling **Link:** https://learn.microsoft.com/en-us/azure/architecture/best-practices/transient-faults **Notes:** - - ::: :::spoiler Circuit Breaker Pattern **Link:** https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker **Notes:** - - ::: :::spoiler Retry Pattern **Link:** https://learn.microsoft.com/en-us/azure/architecture/patterns/retry **Notes:** - - ::: --- ## 🧠 AI Agent Memory & Evaluation :::spoiler AI Agent Memory (IBM) **Link:** https://www.ibm.com/think/topics/ai-agent-memory **Notes:** - - ::: :::spoiler MCP Agent Memory Types **Link:** https://www.byteplus.com/en/topic/542179?title=mcp-agent-memory-types-management-implementation **Notes:** - - ::: :::spoiler AI Agent Evaluation (IBM) **Link:** https://www.ibm.com/think/topics/ai-agent-evaluation **Notes:** - - ::: :::spoiler RAGAS Agent Metrics **Link:** https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/agents/ **Notes:** - - ::: --- ## 🔗 LangChain Resources :::spoiler Portkey Logging & Tracing **Link:** https://python.langchain.com/docs/integrations/providers/portkey/logging_tracing_portkey/ **Notes:** - - ::: :::spoiler Time-Weighted Retriever **Link:** https://js.langchain.com/docs/integrations/retrievers/time-weighted-retriever/ **Notes:** - - ::: :::spoiler LangChain Tracing Concepts **Link:** https://python.langchain.com/docs/concepts/tracing/ **Notes:** - - ::: :::spoiler Structured Outputs **Link:** https://python.langchain.com/docs/concepts/structured_outputs/ **Notes:** - - ::: :::spoiler LangSmith Rate Limiting **Link:** https://docs.smith.langchain.com/evaluation/how_to_guides/rate_limiting **Notes:** - - ::: --- ## 📈 Monitoring & Data Quality :::spoiler Monitoring ML Models (Towards Data Science) **Link:** https://towardsdatascience.com/monitoring-machine-learning-models-in-production-how-to-track-data-quality-and-integrity-391435c8a299/ **Notes:** - - ::: --- ## 🎯 Fine-Tuning & RAG :::spoiler Making LLMs More Accurate with RAG Fine-Tuning **Link:** https://towardsdatascience.com/how-to-make-your-llm-more-accurate-with-rag-fine-tuning/ **Notes:** - - ::: --- ## 🛡️ Regulatory Compliance & Ethics :::spoiler FDA AI/ML Software Guidance **Link:** https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device **Notes:** - - ::: :::spoiler EU AI Act **Link:** https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 **Notes:** - - ::: :::spoiler IEEE Ethics in Action **Link:** https://ethicsinaction.ieee.org/ **Notes:** - - ::: :::spoiler AI for Regulatory Compliance **Link:** https://www.leewayhertz.com/ai-for-regulatory-compliance/#core-technologies **Notes:** - - ::: :::spoiler Responsible AI Updates 2023 **Link:** https://medium.com/@adnanmasood/responsible-ai-revisited-critical-changes-and-updates-since-our-2023-playbook-0c1610d57f37 **Notes:** - - ::: :::spoiler AI Guardrails (Aporia) **Link:** https://www.aporia.com/learn/ai-guardrails/ **Notes:** - - ::: --- ## 👥 Human-in-the-Loop :::spoiler AI Agents with Human-in-the-Loop **Link:** https://cobusgreyling.medium.com/ai-agents-with-human-in-the-loop-f910d0c0384b **Notes:** - - ::: :::spoiler Human-in-the-Loop AI Explained **Link:** https://www.holisticai.com/blog/human-in-the-loop-ai#:~:text=Human%2Din%2Dthe%2DLoop,continuous%20feedback%20and%20decision%2Dmaking. **Notes:** - - ::: :::spoiler Key Risks of Unchecked AI **Link:** https://onereach.ai/blog/human-in-the-loop-agentic-ai-systems/#:~:text=Key%20risks%20of%20unchecked%20AI,Book%20a%20Demo **Notes:** - - ::: --- ## 🎓 Prompt Engineering :::spoiler Chain-of-Thought Prompting **Link:** https://www.codecademy.com/article/chain-of-thought-cot-prompting **Notes:** - - ::: --- ## 🚀 Deployment & APIs :::spoiler Using NVIDIA Llama Nemotron API **Link:** https://apidog.com/blog/use-nvidia-llama-nemotron-api/ **Notes:** - - ::: :::spoiler Deploy Llama 3.1 Nemotron on VM **Link:** https://dev.to/nodeshiftcloud/how-to-deploy-llama-31-nemotron-70b-instruct-on-a-virtual-machine-in-the-cloud-3777 **Notes:** - - ::: --- ## 🎥 Video Resources :::spoiler NVIDIA Agentic AI Video **Link:** https://www.youtube.com/watch?v=NaT5Eo97_I0 **Notes:** - - ::: --- ## 📌 Quick Reference **Total Resources:** 108+ **Last Updated:** [Add date when you finish] **Tags:** #AgenticAI #NVIDIA #MachineLearning #LLM #AIAgents --- *Feel free to add your own notes, ratings, or completion status in each spoiler section!*
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up