# Timeline ###### tags: `organisation` ```mermaid gantt dateFormat YYYY-MM-DD title Timeline excludes weekends axisFormat %a-%d %% (`excludes` accepts specific dates in YYYY-MM-DD format, days of the week ("sunday") or "weekends", but not the word "weekdays".) section Data Visualisation Clustering(Sa, Ch):active, a1, 2021-12-13, 24h PCA on MorphoCut features(Sa): done, a2, 2021-12-10, 24h PCA on CNN features(Ch):active, a3, 2021-12-13, 24h section Data/Feature Exploration Data augmentation for CNN (Ro, Je):active, b1, 2021-12-13, 24h Feature extraction for Baseline Random Forest (Mi, Da, Ro): done, b2, 2021-12-08, 24h section Model Experimentation Set up baseline Random Forest (Mi, Da, Ro):done, c1, 2021-12-07, 48h Set up baseline CNN(Me, Ro, Je, At):done, c2, 2021-12-07, 48h Running CNN experiments (At): active, c3, 2021-12-13, 24h CNN VGG16 implementation(Me): active, c4, 2021-12-13, 24h Comparison of feature importance for each of the models (RF vs CNN): active, c5, 2021-12-13, 48h section Documentation/Write-up PCA on MorphoCut features(Sa): active, d1, 2021-12-13, 24h MorphoCut feature extraction(Da): active, d2, 2021-12-13, 24h Random Forests(Mi): active, d3, 2021-12-13, 24h section Code Implementation incorporate pre-trained CNN in Scivision(At, Al): active, e1, 2021-12-13, 24h incorporate pre-trained RF in Scivision(Ro, Mi, Da, Al): active, e2, 2021-12-13, 24h section Deadlines DSG catch-up session: crit, f1, 2021-12-10, 12h Final presentation session: crit, f2, 2021-12-16, 12h Report submission: crit, f3, 2021-12-17, 12h ``` To do (week 2): [x] GitHub refactor to one branch, AC [x] Copepod / non copepod without detirtus Random forest with new test / train [x] Species without detritus Random forest new test / train [] Report writing for Random Forest and results [] Report writing feature extraction using morphocut [] Report writing background on plankton classification [] PCA on the morphocut data RB, DS [] Explainable CNN [] Explore https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html MC [] Explore https://vitalflux.com/k-fold-cross-validation-python-example/, MC [] Copepod / non copepod without detirtus CNN with new test / train [] Species without detritus CNN new test / train - Let's all use the new test/train split that Rob made, both for Random Forest and CNN - CNN will also apply augmentation to the train dataset *Classification Evaluation Methods: Accuracy Precision/Recall F1 Score Confusion Matrix ROC/AUC Curve https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html *Evaluate Model RF => R2 RMSE CNNs => Loss vs Accuracy CNN team update: [] Attiq: CNN experiments (https://hackmd.io/SQGlE6fQSh-2_5BLfRJUDA) - wihtin the next 24h [] Rohit, Jennifer: data augmentation - updates within the next 24h [] Meghna: VGG