# Intelligence, Self-Awareness, and Sentience Reading List Questions to think about while reading: * What qualifies as intelligence? * What qualifies as self-awareness? * What qualifies as sentience? * Can an intelligence not be sentient, but still report back that it is? * Can something be sentient, but not intelligent enough to report back that it is? * Can something be neither intelligent or sentient, but be statistically likely to compose sentences like it was trained on that fool a human into thinking it it both intelligent and sentient? * How harmful can an AI become that can fool someone into thinking it is a person? * How do we handle a case where an AI is a completely different "personality" (for lack of a better word) from one interaction to another and from one person to another? How do we a handle a being that has no consistent self-identity from one moment to another? ## Foundations for Understanding Intelligence & Consciousness * Hofstadter, D. R. (2000). Godel, Escher, Bach (Penguin Press Science). United Kingdom: Penguin. * Hofstadter, D. R., Dennett, D. C. (1982). The Mind's I: Fantasies and Reflections on Self and Soul. United Kingdom: Bantam Books. * Chalmers, D. J. (1996). The conscious mind: In search of a fundamental theory. Oxford Paperbacks. * Dennett, D. C. (2017). Consciousness Explained. United States: Little, Brown. * Chalmers, D. J. (2002). Philosophy of mind: Classical and contemporary readings. * Edelman, G. M. (2005). Wider Than the Sky: The Phenomenal Gift of Consciousness. United Kingdom: Yale University Press. * Begley, S., Schwartz, J. M. (2009). The Mind and the Brain: Neuroplasticity and the Power of Mental Force. United States: HarperCollins. * Aleksander, I. (2001). How to Build a Mind: Toward Machines with Imagination. New York: Columbia University Press. * Brooks, R. A. (2003). Flesh and Machines: How Robots Will Change Us. United States: Vintage Books. * LeDoux, J., LeDoux, J. (2003). Synaptic Self: How Our Brains Become Who We Are. United Kingdom: Penguin Publishing Group. * Hawkins, J., Blakeslee, S. (2007). On Intelligence. United States: Henry Holt and Company. * Taylor, J. B. (2008). My Stroke of Insight: A Brain Scientist's Personal Journey. United States: Penguin Publishing Group. * Pinker, S. (2009). How the Mind Works. United Kingdom: W. W. Norton. * McCorduck, P. (2004). Machines Who Think: A Personal Inquiry Into the History and Prospects of Artificial Intelligence. United Kingdom: Taylor & Francis. * Chalmers, D. J. (2010). The character of consciousness. Oxford University Press. * [Damasio, A. (2011) The quest to understand consciousness. TED2011.](https://www.ted.com/talks/antonio_damasio_the_quest_to_understand_consciousness) * Turkle, S. (2011). Alone Together: Why We Expect More from Technology and Less from Each Other. United States: Basic Books. * Brockman, J. (2015). What to Think About Machines That Think: Today's Leading Thinkers on the Age of Machine Intelligence. United States: HarperCollins. * Hutchins, E., Hutchins, E. (1995). Cognition in the wild. Cambridge: MIT Press. * Clark, A. (2004). Natural-born Cyborgs: Minds, Technologies, and the Future of Human Intelligence. United Kingdom: Oxford University Press. * [Haraway, D. (2006). A cyborg manifesto: Science, technology, and socialist-feminism in the late 20th century. In The international handbook of virtual learning environments (pp. 117-158). Springer, Dordrecht.](http://www.faculty.umb.edu/gary_zabel/Courses/Art%20and%20Philosophy%20in%20SL%20and%20Other%20Virtual%20Worlds/Texts/cyborg_manifesto.pdf) * [Lloyd, S. (2012). A Turing test for free will. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1971), 3597-3610.](https://doi.org/10.1098/rsta.2011.0331) * Tononi, G., Edelman, G. M. (2008). A Universe Of Consciousness: How Matter Becomes Imagination. United States: Basic Books. * Koch, C. (2012). Consciousness: Confessions of a Romantic Reductionist. United States: MIT Press. * [Jabr, F. (2012) Does Self-Awareness Require a Complex Brain? Scientific American. 22 Aug.](https://blogs.scientificamerican.com/brainwaves/does-self-awareness-require-a-complex-brain/) * Sacks, O., Sacks, O. (2017). The River of Consciousness. United States: Knopf Doubleday Publishing Group. * Koch, C. (2019). The feeling of life itself: why consciousness is widespread but can't be computed. Mit Press. * Graziano, M. S. A. (2019). Rethinking Consciousness: A Scientific Theory of Subjective Experience. United States: W. W. Norton. * [Andersen, R. (2019) Do Animals Have Feelings? The Atlantic.](https://www.theatlantic.com/magazine/archive/2019/03/what-the-crow-knows/580726/) * Christian, B. (2020). The alignment problem: Machine learning and human values. WW Norton & Company. * De Waal, F. (2016). Are we smart enough to know how smart animals are?. WW Norton & Company. * [Fiske, A., Henningsen, P., & Buyx, A. (2019). Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. Journal of medical Internet research, 21(5), e13216.](https://doi.org/10.2196%2F13216) * Vince, G. (2020). Transcendence: How Humans Evolved Through Fire, Language, Beauty, and Time. United States: Basic Books. * Yonck, R. (2020). Future Minds: The Rise of Intelligence from the Big Bang to the End of the Universe. United States: Arcade. * Schmidt, E., Huttenlocher, D., Kissinger, H. A. (2021). The Age of AI: And Our Human Future. United States: Little, Brown. * [Connock, A., Stephen, A. (2022) We taught an AI to impersonate Shakespeare and Oscar Wilde – here’s what it revealed about sentience. The Conversation. 14 June.](https://theconversation.com/we-taught-an-ai-to-impersonate-shakespeare-and-oscar-wilde-heres-what-it-revealed-about-sentience-184969) * [OpenAI’s new language generator GPT-3 is shockingly good—and completely mindless](https://www.technologyreview.com/2020/07/20/1005454/openai-machine-learning-language-generator-gpt-3-nlp/) * [Bratton, B. & Agüera y Arcas, B. (2022) The Model is the Message: Why We Need New Language For Artificial Intelligence. Noema. 12 July](https://www.noemamag.com/the-model-is-the-message/) * [Psychophysicists: Your Brain Might Not Be as Conscious as You Think. The Byte.](https://futurism.com/the-byte/psychophysicists-brain-conscious) * [Ward, C. (2022) This robot teaches ants, then the ants teach their friends. SyFy Wire. 16 August.](https://www.syfy.com/syfy-wire/ants-learn-from-robots-and-one-another) * [Ball, P. (2022) The study of nonhuman intelligence could be missing major insights. Big Think. 14 May.](https://bigthink.com/thinking/the-book-of-minds/) ## Seeing things that might not be there * [Nayak, S. M., & Griffiths, R. R. (2022). A single belief-changing psychedelic experience is associated with increased attribution of consciousness to living and non-living entities. Frontiers in psychology, 1035.](https://doi.org/10.3389/fpsyg.2022.852248) * [Liu, J., Li, J., Feng, L., Li, L., Tian, J., & Lee, K. (2014). Seeing Jesus in toast: neural and behavioral correlates of face pareidolia. Cortex, 53, 60-77.](https://doi.org/10.1016/j.cortex.2014.01.013) * The ELIZA effect: - [ELIZA effect](https://en.wikipedia.org/wiki/ELIZA_effect) - [Episode 382: The ELIZA Effect. 99% Invisible.](https://99percentinvisible.org/episode/the-eliza-effect/) ## Bias in AI * [Sham, A. H., Aktas, K., Rizhinashvili, D., Kuklianov, D., Alisinanoglu, F., Ofodile, I., ... & Anbarjafari, G. (2022). Ethical AI in facial expression analysis: Racial bias. Signal, Image and Video Processing, 1-8.](https://doi.org/10.1007/s11760-022-02246-8) * [Boutin, C. (2022) There’s More to AI Bias Than Biased Data, NIST Report Highlights. NIST News. 16 March.](https://www.nist.gov/news-events/news/2022/03/theres-more-ai-bias-biased-data-nist-report-highlights) * [Schwartz, R., Vassilev, A., Greene, K., Perine, L., Burt, A., & Hall, P. (2022). Towards a Standard for Identifying and Managing Bias in Artificial Intelligence.](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1270.pdf) * https://blogs.ischool.berkeley.edu/w231/2021/06/18/ai-bias-where-does-it-come-from-and-what-can-we-do-about-it/ * [Girish, D. (2020) ‘Coded Bias’ Review: When the Bots Are Racist. The New York Times. 11 Nov.](https://www.nytimes.com/2020/11/11/movies/coded-bias-review.html) * [Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M. E., ... & Staab, S. (2020). Bias in data‐driven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1356.](https://doi.org/10.1002/widm.1356) * [Sharma, K. (2019) How to keep human bias out of AI. TEDxWarwick.](https://www.ted.com/talks/kriti_sharma_how_to_keep_human_bias_out_of_ai) ## Information Theory * [Aftab, O., Cheung, P., Kim, A., Thakkar, S., & Yeddanapudi, N. (2001). Information theory: Information theory and the digital age. Final paper, Project History, Massachusetts Institute of Technology.](https://web.mit.edu/6.933/www/Fall2001/Shannon2.pdf) * [Wikipedia contributors. (2022, June 14). Information theory. In Wikipedia, The Free Encyclopedia.](https://en.wikipedia.org/w/index.php?title=Information_theory&oldid=1093049443) * [Wikipedia contributors. (2022, May 19). Entropy (order and disorder). In Wikipedia, The Free Encyclopedia.](https://en.wikipedia.org/w/index.php?title=Entropy_(order_and_disorder)&oldid=1088678848) * [DeDeo, S. (2018). Information theory for intelligent people. Santa Fe.](https://wiki.santafe.edu/images/a/a8/IT-for-Intelligent-People-DeDeo.pdf) * [Kak, S. (2020). Information theory and dimensionality of space. Scientific Reports, 10(1), 1-5.](https://doi.org/10.1038/s41598-020-77855-9) * [Maroney, Owen, "Information Processing and Thermodynamic Entropy", The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.).](https://plato.stanford.edu/archives/fall2009/entries/information-entropy/) * [Wikipedia contributors. (2022, February 6). Principle of maximum entropy. In Wikipedia, The Free Encyclopedia.](https://en.wikipedia.org/w/index.php?title=Principle_of_maximum_entropy&oldid=1070264697) ### Order from entropy * [Frenkel, D. (1993). Order through disorder: entropy strikes back. Physics world, 6(2), 24.](https://doi.org/10.1088/2058-7058/6/2/24) * [Lorenz, R. D., & Kleidon, A. (Eds.). (2005). Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer-Verlag GmbH..](https://doi.org/10.1007/b12042) * [Haji-Akbari, A., Engel, M., Keys, A. S., Zheng, X., Petschek, R. G., Palffy-Muhoray, P., & Glotzer, S. C. (2009). Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature, 462(7274), 773-777.](https://doi.org/10.1038/nature08641) * [Ben-Naim, A. (2011). Entropy: Order or information. Journal of chemical education, 88(5), 594-596.](https://doi.org/10.1021/ed100922x) * [Damasceno, P. F., Engel, M., & Glotzer, S. C. (2012). Predictive self-assembly of polyhedra into complex structures. Science, 337(6093), 453-457.](https://doi.org/10.1126/science.1220869) * [Frenkel, D. (2015). Order through entropy. Nature materials, 14(1), 9-12.](https://doi.org/10.1038/nmat4178) * [Saglam, H., Duzgun, A., Kargioti, A., Harle, N., Zhang, X., Bingham, N. S., ... & Schiffer, P. (2022). Entropy-driven order in an array of nanomagnets. Nature Physics, 1-7.](https://doi.org/10.1038/s41567-022-01555-6) * [Alexander, S. & Almagro-Moreno, S. (2022) Is life the result of the laws of entropy? New Scientist. 11 June.](https://www.newscientist.com/article/2323820-is-life-the-result-of-the-laws-of-entropy/) ## Combinatorial Models * [T-79.5204 Combinatorial Models and Stochastic Algorithms (6 cr) P](http://www.tcs.hut.fi/Studies/T-79.5204/2007SPR/) ## From Information Theory to Machine Learning & Neural Networks * [MacKay, D. J., & Mac Kay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university press.](https://www.inference.org.uk/itprnn/book.pdf) * [Tutorials. Kernel Machines.](http://www.kernel-machines.org/tutorials) * [Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.](https://doi.org/10.1073/pnas.79.8.2554) * [colah's blog](http://colah.github.io/) * [Recurrent Neural Networks](https://people.idsia.ch/~juergen/rnn.html) * [Tishby, N., Pereira, F. C., & Bialek, W. (2000). The information bottleneck method. arXiv preprint physics/0004057.](https://arxiv.org/pdf/physics/0004057.pdf) * [Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.](https://doi.org/10.48550/arXiv.1312.5602) * [Tishby, N., & Zaslavsky, N. (2015, April). Deep learning and the information bottleneck principle. In 2015 ieee information theory workshop (itw) (pp. 1-5). IEEE.](https://arxiv.org/abs/1503.02406) * [Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332-1338.](https://web.archive.org/web/20190606065027/https://cims.nyu.edu/~brenden/LakeEtAl2015Science.pdf) * [Whittington, J. C., & Bogacz, R. (2017). An approximation of the error backpropagation algorithm in a predictive coding network with local hebbian synaptic plasticity. Neural computation, 29(5), 1229-1262.](https://doi.org/10.1162/NECO_a_00949) * [Shwartz-Ziv, R., & Tishby, N. (2017). Opening the black box of deep neural networks via information. arXiv preprint arXiv:1703.00810.](https://arxiv.org/abs/1703.00810) * [Alemi, A. A., Fischer, I., Dillon, J. V., & Murphy, K. (2016). Deep variational information bottleneck. arXiv preprint arXiv:1612.00410.](https://arxiv.org/pdf/1612.00410.pdf) * [Zhang, C., Ren, M., & Urtasun, R. (2018). Graph hypernetworks for neural architecture search. arXiv preprint arXiv:1810.05749.](https://arxiv.org/abs/1810.05749) * [Li, Y., Gimeno, F., Kohli, P., & Vinyals, O. (2020). Strong generalization and efficiency in neural programs. arXiv preprint arXiv:2007.03629.](https://arxiv.org/pdf/2007.03629.pdf) * [Song, Y., Lukasiewicz, T., Xu, Z., & Bogacz, R. (2020). Can the Brain Do Backpropagation?---Exact Implementation of Backpropagation in Predictive Coding Networks. Advances in neural information processing systems, 33, 22566-22579.](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610561/) * [Millidge, B., Tschantz, A., & Buckley, C. L. (2022). Predictive coding approximates backprop along arbitrary computation graphs. Neural Computation, 34(6), 1329-1368.](https://doi.org/10.1162/neco_a_01497) * [Bubeck, S., & Sellke, M. (2021). A universal law of robustness via isoperimetry. Advances in Neural Information Processing Systems, 34, 28811-28822.](https://arxiv.org/abs/2105.12806) * [Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.](https://arxiv.org/abs/2108.07258) * [Rosenbaum, R. (2022). On the relationship between predictive coding and backpropagation. Plos one, 17(3), e0266102.](https://doi.org/10.1371/journal.pone.0266102) ### Ising Models * [Wikipedia contributors. (2022, May 12). Ising model. In Wikipedia, The Free Encyclopedia.](https://en.wikipedia.org/w/index.php?title=Ising_model&oldid=1087414113) * [Wikipedia contributors. (2022, May 23). Spin glass. In Wikipedia, The Free Encyclopedia.](https://en.wikipedia.org/w/index.php?title=Spin_glass&oldid=1089309646) * [Schaap, H. G. (2005). Ising models and neural networks. University Library Groningen[Host].](http://www.yaroslavvb.com/papers/schaap-ising.pdf) * [The Ising Model, Spin Glasses and Neural Networks](http://www.tcs.hut.fi/Studies/T-79.5204/2007SPR/tekstit/lecnotes_07.pdf) * [Little, W. A. (1980). An ising model of a neural network. In Biological Growth and Spread (pp. 173-179). Springer, Berlin, Heidelberg.](https://doi.org/10.1007/978-3-642-61850-5_18) * [Amit, Daniel J., Hanoch Gutfreund, and Haim Sompolinsky. "Spin-glass models of neural networks." Physical Review A 32.2 (1985): 1007.](https://www.researchgate.net/publication/283617465_Spin-glass_models_of_neural_networks) * [van Hemmen, J. L. (1986). Spin-glass models of a neural network. Physical Review A, 34(4), 3435.](https://doi.org/10.1103/PhysRevA.34.3435) * [Gardner, E., & Derrida, B. (1988). Optimal storage properties of neural network models. Journal of Physics A: Mathematical and general, 21(1), 271.](https://hal.archives-ouvertes.fr/hal-03285587/file/Optimal%20storage%20properties%20of%20neural%20network%20models.pdf) * [Schneidman, E., Berry, M. J., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087), 1007-1012.](https://doi.org/10.1038/nature04701) * [Roudi, Y., Tyrcha, J., & Hertz, J. (2009). Ising model for neural data: model quality and approximate methods for extracting functional connectivity. Physical Review E, 79(5), 051915.](https://doi.org/10.1103/physreve.79.051915) * [Yoshioka, M. (2009). Learning of spatiotemporal patterns in Ising-spin neural networks: analysis of storage capacity by path integral methods. Physical review letters, 102(15), 158102.](https://doi.org/10.1103/physrevlett.102.158102) * [Witoelar, A., & Roudi, Y. (2011). Neural network reconstruction using kinetic Ising models with memory. BMC Neuroscience, 12(1), 1-2.](https://doi.org/10.1186/1471-2202-12-S1-P274) * [Mehta, P., & Schwab, D. J. (2014). An exact mapping between the variational renormalization group and deep learning. arXiv preprint arXiv:1410.3831.](https://arxiv.org/abs/1410.3831) * [Pai, S. (2016) Convolutional Neural Networks Arise From Ising Models and Restricted Boltzmann Machines. Stanford University, APPPHYS 293 Term Paper. 7 June.](https://web.stanford.edu/~sunilpai/convolutional-neural-networks.pdf) * [Yamamoto, Y., Aihara, K., Leleu, T., Kawarabayashi, K. I., Kako, S., Fejer, M., ... & Takesue, H. (2017). Coherent Ising machines—Optical neural networks operating at the quantum limit. npj Quantum Information, 3(1), 1-15.](https://doi.org/10.1038/s41534-017-0048-9) * [Morningstar, A., & Melko, R. G. (2018). Deep Learning the Ising Model Near Criticality. Journal of Machine Learning Research, 18(163), 1-17.](https://dl.acm.org/doi/pdf/10.5555/3122009.3242020) * [Efthymiou, S., Beach, M. J., & Melko, R. G. (2019). Super-resolving the Ising model with convolutional neural networks. Physical Review B, 99(7), 075113.](https://doi.org/10.1103/PhysRevB.99.075113) * [Talalaev, D. V. (2020, October). Hopfield neural network and anisotropic Ising model. In International Conference on Neuroinformatics (pp. 381-386). Springer, Cham.](https://doi.org/10.1007/978-3-030-60577-3_45) * [D'Angelo, F., & Böttcher, L. (2020). Learning the Ising model with generative neural networks. arXiv preprint arXiv:2001.05361.](https://doi.org/10.1103/PhysRevResearch.2.023266) * [Aguilera, M., Moosavi, S. A., & Shimazaki, H. (2021). A unifying framework for mean-field theories of asymmetric kinetic Ising systems. Nature communications, 12(1), 1-12.](https://doi.org/10.1038/s41467-021-20890-5) * [Kara, O., Sehanobish, A., & Corzo, H. H. (2021). Fine-tuning Vision Transformers for the Prediction of State Variables in Ising Models. arXiv preprint arXiv:2109.13925.](https://arxiv.org/abs/2109.13925) * [Zhang, Y. (2021). Ising spin configurations with the deep learning method. Journal of Physics Communications, 5(1), 015006.](https://doi.org/10.1088/2399-6528/abd7c3) ### Tensor Networks * [Gesteau, E., Marcolli, M., & Parikh, S. (2022). Holographic tensor networks from hyperbolic buildings. arXiv preprint arXiv:2202.01788.](https://doi.org/10.48550/arXiv.2202.01788) * [Park, C., Hwang, C. O., Cho, K., & Kim, S. J. (2022). Dual Geometry of Entanglement Entropy via Deep Learning. arXiv preprint arXiv:2205.04445.](https://doi.org/10.48550/arXiv.2205.04445) * [Howard, E. (2021). Holographic renormalization with machine learning. In Emerging Technologies in Data Mining and Information Security (pp. 253-261). Springer, Singapore.](https://doi.org/10.1007/978-981-15-9774-9_24) * [Kobayashi, M. (2021). Information geometry of hyperbolic-valued Boltzmann machines. Neurocomputing, 431, 163-168.](https://doi.org/10.1016/j.neucom.2020.12.048) * [Zhang, Q., Guo, B., Kong, W., Xi, X., Zhou, Y., & Gao, F. (2021). Tensor-based dynamic brain functional network for motor imagery classification. Biomedical Signal Processing and Control, 69, 102940.](https://doi.org/10.1016/j.bspc.2021.102940) * [Ganchev, A. (2019, February). On bulk/boundary duality and deep networks. In AIP Conference Proceedings (Vol. 2075, No. 1, p. 100002). AIP Publishing LLC.](https://doi.org/10.1063/1.5091246) * [Chirco, G., Oriti, D., & Zhang, M. (2018). Group field theory and tensor networks: towards a Ryu–Takayanagi formula in full quantum gravity. Classical and Quantum Gravity, 35(11), 115011.](https://doi.org/10.1088/1361-6382/aabf55) * [Gan, W. C., & Shu, F. W. (2017). Holography as deep learning. International Journal of Modern Physics D, 26(12), 1743020.](https://doi.org/10.1142/S0218271817430209) * [Czech, B., Lamprou, L., McCandlish, S., & Sully, J. (2016). Tensor networks from kinematic space. Journal of High Energy Physics, 2016(7), 1-38.](https://doi.org/10.1007/JHEP07(2016)100) * [Czech, B., Lamprou, L., McCandlish, S., & Sully, J. (2015). Integral geometry and holography. Journal of High Energy Physics, 2015(10), 1-41.](https://doi.org/10.1007/JHEP10(2015)175) * [Sully, J. (2015) Geometry from Compression. Perimeter Institute Recorded Seminar Archive. 3 Feb.](https://pirsa.org/15020080) * It would be interesting to see if what deep connections exist between this and [information geometry](https://en.wikipedia.org/wiki/Information_geometry). * [Evenbly, G., & Vidal, G. (2015). Tensor network renormalization. Physical review letters, 115(18), 180405.](https://doi.org/10.1103/PhysRevLett.115.180405) * [Phien, H. N., McCulloch, I. P., & Vidal, G. (2015). Fast convergence of imaginary time evolution tensor network algorithms by recycling the environment. Physical Review B, 91(11), 115137.](https://doi.org/10.1103/PhysRevB.91.115137) * [Orús, R. (2014). Advances on tensor network theory: symmetries, fermions, entanglement, and holography. The European Physical Journal B, 87(11), 1-18.](https://doi.org/10.1140/epjb/e2014-50502-9) * [Orús, R. (2014). A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of physics, 349, 117-158.](https://doi.org/10.1016/j.aop.2014.06.013) * [Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. Advances in neural information processing systems, 26.](https://dl.acm.org/doi/10.5555/2999611.2999715) * [Lv, Z., Luo, S., Liu, Y., & Zheng, Y. (2006, August). Information geometry approach to the model selection of neural networks. In First International Conference on Innovative Computing, Information and Control-Volume I (ICICIC'06) (Vol. 3, pp. 419-422). IEEE.](https://doi.org/10.1109/ICICIC.2006.463) * [Pellionisz, A. (1989). Tensor Network Model of the Cerebellum and its Olivary System. The Olivo-Cerebellar System in Motor Control, 400-424.](http://www.junkdna.com/1989_strata_olive_book_springer.pdf) * [Pellionisz, A. (1989). Tensor geometry: A language of brains & neurocomputers. Generalized coordinates in neuroscience & robotics. In Neural Computers (pp. 381-391). Springer, Berlin, Heidelberg.](https://doi.org/10.1007/978-3-642-83740-1_39) * [Pellionisz, A. (1988). Tensorial aspects of the multidimensional massively parallel sensorimotor function of neuronal networks. Progress in brain research, 76, 341-354.](https://doi.org/10.1016/S0079-6123(08)64521-5) * [Pellionisz, A. J. (1986). Tensor network theory of the central nervous system and sensorimotor modeling. In Brain theory (pp. 121-145). Springer, Berlin, Heidelberg.](https://doi.org/10.1007/978-3-642-70911-1_8) * [Pellionisz, A., & Llinas, R. (1985). Tensor network theory of the metaorganization of functional geometries in the central nervous system. Neuroscience, 16(2), 245-273.](https://doi.org/10.1016/0306-4522(85)90001-6) * [Pellionisz, A. J. (1985). Robotics connected to neurobiology by tensor theory of brain function. In IEEE Proceedings of the International Conference on Cybernetics and Society (pp. 411-414).](http://www.junkdna.com/1985_ieee_proc_systems_man_cybernetics.pdf) * [Pellionisz, A., & Llinás, R. (1982). Tensor theory of brain function. The cerebellum as a space-time metric. In Competition and cooperation in neural nets (pp. 394-417). Springer, Berlin, Heidelberg.](https://doi.org/10.1007/978-3-642-46466-9_23) * [Pellionisz, A., & Llinás, R. (1980). Tensorial approach to the geometry of brain function: Cerebellar coordination via a metric tensor. Neuroscience, 5(7), 1125-1136.](https://doi.org/10.1016/0306-4522(80)90191-8) ## Foundations for Complexity and Emergence * Waldrop, M. M. (1993). Complexity: The emerging science at the edge of order and chaos. Simon and Schuster. * Kauffman, S., & Kauffman, S. A. (1995). At home in the universe: The search for laws of self-organization and complexity. Oxford University Press, USA. * Bak, P. (2013). How nature works: the science of self-organized criticality. Springer Science & Business Media. * Gleick, J. (2008). Chaos: Making a new science. Penguin. * Prigogine, I., & Stengers, I. (2018). Order out of chaos: Man's new dialogue with nature. Verso Books. * Meadows, D. H. (2008). Thinking in systems: A primer. chelsea green publishing. * Mitchell, M. (2009). Complexity: A guided tour. Oxford university press. * Tuszynski, J. A. (Ed.). (2006). The emerging physics of consciousness. Springer Science & Business Media. * Bedau, M. A., & Humphreys, P. E. (2008). Emergence: Contemporary readings in philosophy and science. MIT press. ## Non-linear Dyanmics & Emergence * [Wikipedia contributors. (2022, April 25). Dissipative system. In Wikipedia, The Free Encyclopedia.](https://en.wikipedia.org/w/index.php?title=Dissipative_system&oldid=1084661943) * Kondepudi, D., & Prigogine, I. (2014). Modern thermodynamics: from heat engines to dissipative structures. John Wiley & Sons. * Ott, E. (2002). Chaos in dynamical systems. Cambridge university press. * Strogatz, S. H. (2018). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC press. * Siegelmann, H. T. (2010). Complex systems science and brain dynamics. Frontiers in Computational Neuroscience, 4, 7. * Hirsch, M. W., Smale, S., & Devaney, R. L. (2012). Differential equations, dynamical systems, and an introduction to chaos. Academic press. * Holland, J. H. (2012). Signals and boundaries: Building blocks for complex adaptive systems. Mit Press. ## Complexity * Morowitz, H. J. (2018). The mind, the brain and complex adaptive systems. Routledge. * Krakauer, D. C. (Ed.). (2019). Worlds Hidden in Plain Sight: The Evolving Idea of Complexity at the Santa Fe Institute, 1984-2019. Santa Fe, NM: SFI Press. * Shayan, S. A., Shayan, S. A. (2019). Understanding Complex Adaptive Systems: A Macro and Holistic Approach. (n.p.): Independently Published. * Computational Complexity by Christos H. Papadimitriou * Sipser, M. (1996). Introduction to the Theory of Computation. ACM Sigact News, 27(1), 27-29. * Arora, S., & Barak, B. (2009). Computational complexity: a modern approach. Cambridge University Press. * Goldreich, O. (2008). Computational complexity: a conceptual perspective. ACM Sigact News, 39(3), 35-39. * Li, M., & Vitányi, P. (2019). An introduction to Kolmogorov complexity and its applications. New York: Springer. * Chaitin, G. J., Chaitin, G. J. (2012). Exploring RANDOMNESS. United Kingdom: Springer London. * [Piantadosi, S. T. (2018). One parameter is always enough. AIP Advances, 8(9), 095118.](https://doi.org/10.1063/1.5031956) * [James P. Crutchfield's Research](http://csc.ucdavis.edu/~chaos/Biography/JPCCV.www.html) ## Biology and Complexity * Alon, U. (2006). An introduction to systems biology: design principles of biological circuits. Chapman and Hall/CRC. * Borden, N. M., Stefan, C., & Forseen, S. E. (2015). Imaging Anatomy of the Human Brain: a Comprehensive Atlas Including Adjacent Structures. Springer Publishing Company. ### In Forests * [Filotas, E., Parrott, L., Burton, P. J., Chazdon, R. L., Coates, K. D., Coll, L., ... & Messier, C. (2014). Viewing forests through the lens of complex systems science. Ecosphere, 5(1), 1-23.](https://doi.org/10.1890/ES13-00182.1) ## Modeling the Brain * Boden, M. A. (1987). Artificial Intelligence And Natural Man. United Kingdom: Basic Books. * Boden, M. A. (1988). Computer Models of Mind: Computational Approaches in Theoretical Psychology. Netherlands: Cambridge University Press. * Lytton, W. W. (2007). From computer to brain: foundations of computational neuroscience. Springer Science & Business Media. * Spitzer, M., Spitzer, M. (1999). The Mind Within the Net: Models of Learning, Thinking, and Acting. United Kingdom: MIT Press. * [The research of Lisa Feldman Barrett](https://scholar.google.com/citations?user=WF5c0_8AAAAJ) * Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., Hudspeth, A. J., & Mack, S. (Eds.). (2000). Principles of neural science (Vol. 4, pp. 1227-1246). New York: McGraw-hill. * Rieke, F., Warland, D., Van Steveninck, R. D. R., & Bialek, W. (1999). Spikes: exploring the neural code. MIT press. * Cohen, M. X. (2014). Analyzing neural time series data: theory and practice. MIT press. * [Bonelli, R. M., & Cummings, J. L. (2007). Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci, 9, 141-151.](https://doi.org/10.31887%2FDCNS.2007.9.2%2Frbonelli) * [Bassett, D. S., & Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in cognitive sciences, 15(5), 200-209.](https://doi.org/10.1016%2Fj.tics.2011.03.006) * Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press. * [Lohse, C., Bassett, D. S., Lim, K. O., & Carlson, J. M. (2014). Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations. PLoS computational biology, 10(10), e1003712.](https://doi.org/10.1371/journal.pcbi.1003712) * [Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M., Sanchez, C. A., ... & Schürmann, F. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell, 163(2), 456-492.](https://doi.org/10.1016/j.cell.2015.09.029) * [Lahav, N., Ksherim, B., Ben-Simon, E., Maron-Katz, A., Cohen, R., & Havlin, S. (2016). K-shell decomposition reveals hierarchical cortical organization of the human brain. New Journal of Physics, 18(8), 083013.](https://doi.org/10.1088/1367-2630/18/8/083013) * [Strausfeld, N. J., & Hirth, F. (2016). Introduction to ‘Homology and convergence in nervous system evolution’. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1685), 20150034.](https://doi.org/10.1098/rstb.2015.0034) * Gabbiani, F., & Cox, S. J. (2017). Mathematics for neuroscientists. Academic Press. * [Lamberti, M., Hess, M., Dias, I., van Putten, M., le Feber, J., & Marzen, S. (2022). Maximum entropy models provide functional connectivity estimates in neural networks. Scientific Reports, 12(1), 1-10.](https://doi.org/10.1038/s41598-022-13674-4) ## Cognition and Self-hood in Animals Christof Koch wants you to know that [Consciousness Is Everywhere](https://www.huffpost.com/entry/consciousness-is-everywhere_b_1784047). Philip Sopher want you to know [What Animals Teach Us About Measuring Intelligence](https://www.theatlantic.com/education/archive/2015/02/what-animals-teach-us-about-measuring-intelligence/386330/). Also see [Mirror test. In Wikipedia, The Free Encyclopedia.](https://en.wikipedia.org/w/index.php?title=Mirror_test&oldid=1091144179). Some kids put a fish tank on wheels and gave it the ability to control where it goes: [Kent, A. (2017) Just Keep Swimming. Build18@CMU. YouTube.](https://youtu.be/_GDgmP1ac_A). [Read more](https://www.pololu.com/blog/645/just-keep-swimming-a-goldfish-steered-mobile-fish-tank). * [Hubená, P., Horký, P., & Slavík, O. (2021). Fish self-awareness: limits of current knowledge and theoretical expectations. Animal Cognition, 1-15.](https://doi.org/10.1007/s10071-021-01566-5) * [Lenkei, R., Faragó, T., Zsilák, B., & Pongrácz, P. (2021). Dogs (Canis familiaris) recognize their own body as a physical obstacle. Scientific reports, 11(1), 1-8.](https://doi.org/10.1038/s41598-021-82309-x) * [Baragli, P., Scopa, C., Maglieri, V., & Palagi, E. (2021). If horses had toes: demonstrating mirror self recognition at group level in Equus caballus. Animal cognition, 24(5), 1099-1108.](https://doi.org/10.1007/s10071-021-01502-7) * [Stacho, M., Herold, C., Rook, N., Wagner, H., Axer, M., Amunts, K., & Güntürkün, O. (2020). A cortex-like canonical circuit in the avian forebrain. Science, 369(6511), eabc5534.](https://doi.org/10.1126/science.abc5534) * [Herculano-Houzel, S. (2020). Birds do have a brain cortex—and think. Science, 369(6511), 1567-1568.](https://doi.org/10.1126/science.abe0536) * [Nieder, A., Wagener, L., & Rinnert, P. (2020). A neural correlate of sensory consciousness in a corvid bird. Science, 369(6511), 1626-1629.](https://doi.org/10.1126/science.abb1447) * [Kohda, M., Hotta, T., Takeyama, T., Awata, S., Tanaka, H., Asai, J. Y., & Jordan, A. L. (2019). If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals?. PLoS biology, 17(2), e3000021.](https://doi.org/10.1371/journal.pbio.3000021) * [Klump, B. C., Cantat, M., & Rutz, C. (2019). Raw-material selectivity in hook-tool-crafting New Caledonian crows. Biology letters, 15(2), 20180836.](https://doi.org/10.1098/rsbl.2018.0836) * [Hartmann, K., Veit, L., & Nieder, A. (2018). Neurons in the crow nidopallium caudolaterale encode varying durations of visual working memory periods. Experimental Brain Research, 236(1), 215-226.](https://doi.org/10.1007/s00221-017-5120-3) * [Gallup Jr, G. G., & Anderson, J. R. (2018). The “olfactory mirror” and other recent attempts to demonstrate self-recognition in non-primate species. Behavioural Processes, 148, 16-19.](https://doi.org/10.1016/j.beproc.2017.12.010) * [Morrison R, Reiss D (2018) Precocious development of self-awareness in dolphins. PLoS ONE 13(1): e0189813.](https://doi.org/10.1371/journal.pone.0189813) * [Boyle, A. (2018). Mirror Self‐Recognition and Self‐Identification. Philosophy and Phenomenological Research, 97(2), 284-303.](https://doi.org/10.1111/phpr.12370) * [Horowitz, A. (2017). Smelling themselves: Dogs investigate their own odours longer when modified in an “olfactory mirror” test. Behavioural processes, 143, 17-24.](https://doi.org/10.1016/j.beproc.2017.08.001) * [Thomas, N. (2016). Self-Awareness and Selfhood in Animals. In Animal Ethics and the Autonomous Animal Self (pp. 37-67). Palgrave Macmillan, London.](https://doi.org/10.1057/978-1-137-58685-8_3) * [Ari, C., & D’Agostino, D. P. (2016). Contingency checking and self-directed behaviors in giant manta rays: Do elasmobranchs have self-awareness?. Journal of Ethology, 34(2), 167-174.](https://doi.org/10.1007/s10164-016-0462-z) * [Redish, A. D. (2016). Vicarious trial and error. Nature Reviews Neuroscience, 17(3), 147-159.](https://doi.org/10.1038/nrn.2015.30) * [Hills, T. T., & Butterfill, S. (2015). From foraging to autonoetic consciousness: The primal self as a consequence of embodied prospective foraging. Current Zoology, 61(2), 368-381.](https://doi.org/10.1093/czoolo/61.2.368) * [Anderson, J. R., & Gallup, G. G. (2015). Mirror self-recognition: a review and critique of attempts to promote and engineer self-recognition in primates. Primates, 56(4), 317-326.](https://doi.org/10.1007/s10329-015-0488-9) * [Hockings, K. J., Bryson-Morrison, N., Carvalho, S., Fujisawa, M., Humle, T., McGrew, W. C., ... & Matsuzawa, T. (2015). Tools to tipple: ethanol ingestion by wild chimpanzees using leaf-sponges. Royal Society open science, 2(6), 150150.](https://doi.org/10.1098/rsos.150150) * [Logan CJ, Jelbert SA, Breen AJ, Gray RD, Taylor AH (2014) Modifications to the Aesop's Fable Paradigm Change New Caledonian Crow Performances. PLoS ONE 9(7): e103049.](https://doi.org/10.1371/journal.pone.0103049) * [Savanah, S. (2013). Mirror self-recognition and symbol-mindedness. Biology & Philosophy, 28(4), 657-673.](https://doi.org/10.1007/s10539-012-9318-2) * [Templer, V. L., & Hampton, R. R. (2013). Episodic memory in nonhuman animals. Current Biology, 23(17), R801-R806.](https://doi.org/10.1016/j.cub.2013.07.016) * [DeGrazia, D. (2009). Self-awareness in animals (pp. 201-217). The philosophy of animal minds. Cambridge, England: Cambridge University Press.](https://philosophy.columbian.gwu.edu/sites/g/files/zaxdzs1676/f/image/degrazia_selfawarenessanimals.pdf) * [Prior, H., Schwarz, A., & Güntürkün, O. (2008). Mirror-induced behavior in the magpie (Pica pica): evidence of self-recognition. PLoS biology, 6(8), e202.](https://doi.org/10.1371/journal.pbio.0060202) * [Plotnik, J. M., De Waal, F. B., & Reiss, D. (2006). Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences, 103(45), 17053-17057.](https://doi.org/10.1073/pnas.0608062103) * [de Waal, F. B., Dindo, M., Freeman, C. A., & Hall, M. J. (2005). The monkey in the mirror: hardly a stranger. Proceedings of the National Academy of sciences, 102(32), 11140-11147.](https://doi.org/10.1073/pnas.0503935102) * [Bekoff, M., & Sherman, P. W. (2004). Reflections on animal selves. Trends in ecology & evolution, 19(4), 176-180.](https://doi.org/10.1016/j.tree.2003.12.010) * [Bekoff, M. (2002). Awareness: animal reflections. Nature, 419(6904), 255-255.](https://doi.org/10.1038/419255a) * [Gallup Jr, G. G., Anderson, J. R., & Shillito, D. J. (2002). The mirror test. The cognitive animal: Empirical and theoretical perspectives on animal cognition, 325-333.](https://philosophy.hku.hk/courses/cogsci/files/gallup-final.pdf) * [Delfour, F., & Marten, K. (2001). Mirror image processing in three marine mammal species: killer whales (Orcinus orca), false killer whales (Pseudorca crassidens) and California sea lions (Zalophus californianus). Behavioural processes, 53(3), 181-190.](https://doi.org/10.1016/S0376-6357(01)00134-6) * [Reiss, D., & Marino, L. (2001). Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proceedings of the National Academy of Sciences, 98(10), 5937-5942.](https://doi.org/10.1073/pnas.101086398) * [Hauser, M. D., Miller, C. T., Liu, K., & Gupta, R. (2001). Cotton‐top tamarins (Saguinus oedipus) fail to show mirror‐guided self‐exploration. American Journal of Primatology: Official Journal of the American Society of Primatologists, 53(3), 131-137.](https://doi.org/10.1002/1098-2345(200103)53:3%3C131::AID-AJP4%3E3.0.CO;2-X) * [Gallup Jr, G. G. (1998). Self-awareness and the evolution of social intelligence. Behavioural Processes, 42(2-3), 239-247.](https://doi.org/10.1016/s0376-6357(97)00079-x) * [Westergaard, G. C., & Hyatt, C. W. (1994). The responses of bonobos (Pan paniscus) to their mirror images: evidence of selfrecognition. Human Evolution, 9(4), 273-279.](https://doi.org/10.1007/BF02435514) * [Marten, K., & Psarakos, S. (1994). Evidence of self-awareness in the bottlenose dolphin (Tursiops truncatus).](https://doi.org/10.1017/CBO9780511565526.026) * [Parker, S. T. E., Mitchell, R. W., & Boccia, M. L. (1994). Self-awareness in animals and humans: Developmental perspectives. In Based on papers presented at a Conference on Self-Awareness in Monkeys, Apes, and Humans, Sonoma State U, Rohnert, CA, 1991.. Cambridge University Press.](https://doi.org/10.1017/CBO9780511565526) * [Patterson, F., & Gordon, W. (1993). The case for the personhood of gorillas.](http://www.animal-rights-library.com/texts-m/patterson01.htm) * [Povinelli, D. J. (1989). Failure to find self-recognition in Asian elephants (Elephas maximus) in contrast to their use of mirror cues to discover hidden food. Journal of Comparative Psychology, 103(2), 122.](https://doi.apa.org/doi/10.1037/0735-7036.103.2.122) * [Robert, S. (1986). Ontogeny of mirror behavior in two species of great apes. American Journal of Primatology, 10(2), 109-117.](https://doi.org/10.1002/ajp.1350100202) * [Gallup Jr, G. G. Jr 1970. Chimpanzees: self-recognition. Science, 167, 86-87.](https://doi.org/10.1126/science.167.3914.86) * [Amsterdam, B. (1972). Mirror self‐image reactions before age two. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 5(4), 297-305.](https://doi.org/10.1002/dev.420050403) * [Gallup, G. G., McClure, M. K., Hill, S. D., & Bundy, R. A. (1971). Capacity for self-recognition in differentially reared chimpanzees. The Psychological Record, 21(1), 69-74.](https://doi.org/10.1007/BF03393991) ### Animal Culture (Social Learning) * [Byholm, P., Beal, M., Isaksson, N., Lötberg, U., & Åkesson, S. (2022). Paternal transmission of migration knowledge in a long-distance bird migrant. Nature communications, 13(1), 1-7.](https://doi.org/10.1038/s41467-022-29300-w) * [Franks, N. R., Podesta, J. A., Jarvis, E. C., Worley, A., & Sendova-Franks, A. B. (2022). Robotic communication with ants. Journal of Experimental Biology, 225(15), jeb244106.](https://doi.org/10.1242/jeb.244106) * [Whiten, A. (2021). The psychological reach of culture in animals’ lives. Current Directions in Psychological Science, 30(3), 211-217.](https://doi.org/10.1177%2F0963721421993119) * [Lewis, M. A., Fagan, W. F., Auger-Methe, M., Frair, J., Fryxell, J. M., Gros, C., ... & Merkle, J. A. (2021). Learning and animal movement. Frontiers in Ecology and Evolution.](https://doi.org/10.3389/fevo.2021.681704) * [Safina, C. (2020) The secret call of the wild: how animals teach each other to survive. The Guardian. 9 April.](https://www.theguardian.com/environment/2020/apr/09/the-secret-call-of-the-wild-how-animals-teach-each-other-to-survive-aoe) * [Lachlan, R. F., & Whiten, A. (2020). Cultural evolution in non-human animals. Oxford University Press.](https://www.oxfordbibliographies.com/view/document/obo-9780199941728/obo-9780199941728-0129.xml) * [Allen, J. A. (2019). Community through culture: From insects to whales: How social learning and culture manifest across diverse animal communities. BioEssays, 41(11), 1900060.](https://doi.org/10.1002/bies.201900060) * [Jesmer, B. R., Merkle, J. A., Goheen, J. R., Aikens, E. O., Beck, J. L., Courtemanch, A. B., ... & Kauffman, M. J. (2018). Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science, 361(6406), 1023-1025.](https://doi.org/10.1126/science.aat0985) * [Langley, L. (2016) Schooled: Animals That Teach Their Young. National Geographic. 7 May.](https://www.nationalgeographic.com/adventure/article/160507-animals-teaching-parents-science-meerkats) * [Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P., & Fagan, W. F. (2013). Social learning of migratory performance. Science, 341(6149), 999-1002.](https://doi.org/10.1126/science.1237139) * [Sawyer, H., Kauffman, M. J., Middleton, A. D., Morrison, T. A., Nielson, R. M., & Wyckoff, T. B. (2013). A framework for understanding semi‐permeable barrier effects on migratory ungulates. Journal of Applied Ecology, 50(1), 68-78.](https://usgs-cru-individual-data.s3.amazonaws.com/wyckoff/intellcont/sawyer_et_al_2013-1.pdf) ## Intelligence in Plants Here's a fun project: [Elowan: A plant-robot hybrid](https://www.media.mit.edu/projects/elowan-a-plant-robot-hybrid/overview/) * [Karban, R., Grof-Tisza, P., & Couchoux, C. (2022). Consistent individual variation in plant communication: do plants have personalities?. Oecologia, 199(1), 129-137.](https://doi.org/10.1007/s00442-022-05173-0) * [Mallatt, J., Blatt, M. R., Draguhn, A., Robinson, D. G., & Taiz, L. (2021). Debunking a myth: plant consciousness. Protoplasma, 258(3), 459-476.](https://doi.org/10.1007/s00709-020-01579-w) * [Raja, V., Silva, P. L., Holghoomi, R., & Calvo, P. (2020). The dynamics of plant nutation. Scientific reports, 10(1), 1-13.](https://doi.org/10.1038/s41598-020-76588-z) * [Calvo, P., Gagliano, M., Souza, G. M., & Trewavas, A. (2020). Plants are intelligent, here’s how. Annals of Botany, 125(1), 11-28.](https://doi.org/10.1093/aob/mcz155) * [Gagliano, M., Vyazovskiy, V. V., Borbély, A. A., Depczynski, M., & Radford, B. (2020). Comment on'Lack of evidence for associative learning in pea plants'. Elife, 9, e61141.](https://doi.org/10.7554/eLife.61141) * [Markel, K. (2020). Lack of evidence for associative learning in pea plants. Elife, 9.](https://doi.org/10.7554/eLife.57614) * [Taiz, L., Alkon, D., Draguhn, A., Murphy, A., Blatt, M., Hawes, C., ... & Robinson, D. G. (2019). Plants neither possess nor require consciousness. Trends in Plant Science, 24(8), 677-687.](https://doi.org/10.1016/j.tplants.2019.05.008) * [Simard, S.W. (2018). Mycorrhizal Networks Facilitate Tree Communication, Learning, and Memory. In: Baluska, F., Gagliano, M., Witzany, G. (eds) Memory and Learning in Plants. Signaling and Communication in Plants. Springer, Cham.](https://doi.org/10.1007/978-3-319-75596-0_10) * [Affifi, R. (2018). Deweyan psychology in plant intelligence research: Transforming stimulus and response. In Memory and learning in plants (pp. 17-33). Springer, Cham.](https://doi.org/10.1007/978-3-319-75596-0_2) * [Gagliano, M., Abramson, C. I., & Depczynski, M. (2018). Plants learn and remember: lets get used to it. Oecologia, 186(1), 29-31.](https://www.researchgate.net/profile/Monica-Gagliano/publication/321635274_Plants_learn_and_remember_lets_get_used_to_it/links/5a37848eaca27247ede23329/Plants-learn-and-remember-lets-get-used-to-it.pdf) * [Biegler, R. (2018). Insufficient evidence for habituation in Mimosa pudica. Response to Gagliano et al.(2014). Oecologia, 186(1), 33-35.](https://doi.org/10.1007/s00442-017-4012-3) * [Chamovitz, D. A. (2018). Plants are intelligent; now what?. Nature Plants, 4(9), 622-623.](https://doi.org/10.1038/s41477-018-0237-3) * [Yokawa, K., Kagenishi, T., Pavlovič, A., Gall, S., Weiland, M., Mancuso, S., & Baluška, F. (2018). Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Annals of Botany, 122(5), 747-756.](https://doi.org/10.1093/aob/mcx155) * [Trewavas, A. (2017). The foundations of plant intelligence. Interface focus, 7(3), 20160098.](https://doi.org/10.1098/rsfs.2016.0098) * [Trewavas, T. (2016). Plant intelligence: an overview. BioScience, 66(7), 542-551.](https://doi.org/10.1093/biosci/biw048) * [Gagliano, M., Vyazovskiy, V. V., Borbély, A. A., Grimonprez, M., & Depczynski, M. (2016). Learning by association in plants. Scientific reports, 6(1), 1-9.](https://doi.org/10.1038/srep38427) * [Abramson, C. I., & Chicas-Mosier, A. M. (2016). Learning in plants: lessons from Mimosa pudica. Frontiers in Psychology, 7, 417.](https://doi.org/10.3389/fpsyg.2016.00417) * [Gagliano, M., Renton, M., Depczynski, M., & Mancuso, S. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 175(1), 63-72.](http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Experience-teaches-plants-to-learn-faster-and-forget-slower-in-environments-where-it-matters.pdf) * [Cahill Jr, J. F., Bao, T., Maloney, M., & Kolenosky, C. (2013). Mechanical leaf damage causes localized, but not systemic, changes in leaf movement behavior of the Sensitive Plant, Mimosa pudica (Fabaceae) L. Botany, 91(1), 43-47.](https://doi.org/10.1139/cjb-2012-0131) * [Marder, M. (2013). Plant intelligence and attention. Plant signaling & behavior, 8(5), e23902.](https://doi.org/10.4161/psb.23902) * [Calvo Garzón, P., & Keijzer, F. (2011). Plants: Adaptive behavior, root-brains, and minimal cognition. Adaptive behavior, 19(3), 155-171.](http://www.esalq.usp.br/lepse/imgs/paginas_thumb/18--Plants---Adaptive-behavior--root-brains--and-minimal-cognition.pdf) * [Fromm, J., & Lautner, S. (2007). Electrical signals and their physiological significance in plants. Plant, cell & environment, 30(3), 249-257.](https://doi.org/10.1111/j.1365-3040.2006.01614.x) * [Trewavas, A. (2005). Plant intelligence. Naturwissenschaften, 92(9), 401-413.](https://doi.org/10.1007/s00114-005-0014-9) * [Trewavas, A. (2003). Aspects of plant intelligence. Annals of botany, 92(1), 1-20.](https://doi.org/10.1093/aob/mcg101) * [Trewavas, A. (2002). Plant intelligence: Mindless mastery. Nature, 415(6874), 841-841.](https://doi.org/10.1038/415841a) ### Electrical signals in plants * [Luo, Y., Li, W., Lin, Q., Zhang, F., He, K., Yang, D., ... & Chen, X. (2021). A Morphable Ionic Electrode Based on Thermogel for Non‐Invasive Hairy Plant Electrophysiology. Advanced Materials, 33(14), 2007848.](https://doi.org/10.1002/adma.202007848) * [Li, W., Matsuhisa, N., Liu, Z., Wang, M., Luo, Y., Cai, P., ... & Chen, X. (2021). An on-demand plant-based actuator created using conformable electrodes. Nature Electronics, 4(2), 134-142.](https://doi.org/10.1038/s41928-020-00530-4) * [Volkov, A. G. (2021). A Venus-flytrap-based actuator. Nature Electronics, 4(2), 97-97.](https://doi.org/10.1038/s41928-021-00544-6) ## Communication in Fungi * [Adamatzky, A. (2022). Language of fungi derived from their electrical spiking activity. Royal Society Open Science, 9(4), 211926.](https://doi.org/10.1098/rsos.211926) * [Gorzelak, M. A., Asay, A. K., Pickles, B. J., & Simard, S. W. (2015). Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB plants, 7.](https://doi.org/10.1093/aobpla/plv050) ## Decisions * [Kim, S. J., Aono, M., & Nameda, E. (2015). Efficient decision-making by volume-conserving physical object. New Journal of Physics, 17(8), 083023.](https://doi.org/10.1088/1367-2630/17/8/083023) * [Wang, Z., Solloway, T., Shiffrin, R. M., & Busemeyer, J. R. (2014). Context effects produced by question orders reveal quantum nature of human judgments. Proceedings of the National Academy of Sciences, 111(26), 9431-9436.](https://doi.org/10.1073/pnas.1407756111) * [Busemeyer, J. R., Jessup, R. K., Johnson, J. G., & Townsend, J. T. (2006). Building bridges between neural models and complex decision making behaviour. Neural Networks, 19(8), 1047-1058.](https://doi.org/10.1016/j.neunet.2006.05.043) * [Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychological review, 100(3), 432.](https://content.apa.org/doi/10.1037/0033-295X.100.3.432) ## Uniquely Human Currently, what seems to be uniquely human is how we plan things out and imagine futures. * [Gaesser, B., Spreng, R. N., McLelland, V. C., Addis, D. R., & Schacter, D. L. (2013). Imagining the future: Evidence for a hippocampal contribution to constructive processing. Hippocampus, 23(12), 1150-1161.](https://doi.org/10.1002/hipo.22152) * [Schacter, D. L., & Addis, D. R. (2007). The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 773-786.](https://doi.org/10.1098/rstb.2007.2087) * [Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences, 104(5), 1726-1731.](https://doi.org/10.1073/pnas.0610561104) * [Busby, J., & Suddendorf, T. (2005). Recalling yesterday and predicting tomorrow. Cognitive Development, 20(3), 362-372.](http://dx.doi.org/10.1016/j.cogdev.2005.05.002) ## Understanding and Modeling Conciousness * [Kerskens, C. M., & Perez, D. L. (2022). Experimental indications of non-classical brain functions. Journal of Physics Communications.](https://iopscience.iop.org/article/10.1088/2399-6528/ac94be) * [Graziano, M. S. (2022). A conceptual framework for consciousness. Proceedings of the National Academy of Sciences, 119(18), e2116933119.](https://doi.org/10.1073/pnas.211693311) * [Lau, H., Michel, M., LeDoux, J. E., & Fleming, S. M. (2022). The mnemonic basis of subjective experience. Nature Reviews Psychology, 1-10.](https://doi.org/10.1038/s44159-022-00068-6) * [Zlomuzica, A., & Dere, E. (2022). Towards an animal model of consciousness based on the platform theory. Behavioural Brain Research, 419, 113695.](https://doi.org/10.1016/j.bbr.2021.113695) * [Farisco, M., Pennartz, C., Annen, J., Cecconi, B., & Evers, K. (2022). Indicators and criteria of consciousness: ethical implications for the care of behaviourally unresponsive patients. BMC Medical Ethics, 23(1), 1-15.](https://doi.org/10.1186/s12910-022-00770-3) * [Liu, Y., Nour, M. M., Schuck, N. W., Behrens, T. E., & Dolan, R. J. (2022). Decoding cognition from spontaneous neural activity. Nature Reviews Neuroscience, 23(4), 204-214.](https://doi.org/10.1038/s41583-022-00570-z) * [Davis, K. M., de la Torre-Ortiz, C., & Ruotsalo, T. (2022). Brain-Supervised Image Editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 18480-18489).](https://openaccess.thecvf.com/content/CVPR2022/papers/Davis_Brain-Supervised_Image_Editing_CVPR_2022_paper.pdf) * [Murray, E. A., & Fellows, L. K. (2022). Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology, 47(1), 163-179.](https://doi.org/10.1038/s41386-021-01128-w) * [Derakhshani, M., Diósi, L., Laubenstein, M., Piscicchia, K., & Curceanu, C. (2022). At the crossroad of the search for spontaneous radiation and the Orch OR consciousness theory. Physics of Life Reviews.](https://doi.org/10.1016/j.plrev.2022.05.004) * [Brogaard, B., Chomanski, B., & Gatzia, D. E. (2021). Consciousness and information integration. Synthese, 198(3), 763-792.](https://doi.org/10.1007/s11229-020-02613-3) * [Yaden, D. B., Johnson, M. W., Griffiths, R. R., Doss, M. K., Garcia-Romeu, A., Nayak, S., ... & Barrett, F. S. (2021). Psychedelics and consciousness: Distinctions, demarcations, and opportunities. International Journal of Neuropsychopharmacology, 24(8), 615-623.](https://doi.org/10.1093/ijnp/pyab026) — This is a great paper with a good overview of the different problems of consciousness. * [Varley, T. F., Carhart-Harris, R., Roseman, L., Menon, D. K., & Stamatakis, E. A. (2020). Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains. Neuroimage, 220, 117049.](https://doi.org/10.1016/j.neuroimage.2020.117049) * [McFadden, J. (2020). Integrating information in the brain’s EM field: the cemi field theory of consciousness. Neuroscience of Consciousness, 2020(1), niaa016.](https://web.archive.org/web/20201028233228/https://academic.oup.com/nc/article/2020/1/niaa016/5909853) * [Millière, R., Carhart-Harris, R. L., Roseman, L., Trautwein, F. M., & Berkovich-Ohana, A. (2018). Psychedelics, meditation, and self-consciousness. Frontiers in psychology, 9, 1475.](https://doi.org/10.3389/fpsyg.2018.01475) * [Bayne, T., & Carter, O. (2018). Dimensions of consciousness and the psychedelic state. Neuroscience of consciousness, 2018(1), niy008.](https://doi.org/10.1093/nc/niy008) * [Woźniak, M. (2018). “I” and “Me”: the self in the context of consciousness. Frontiers in Psychology, 9, 1656.](https://doi.org/10.3389/fpsyg.2018.01656) * [Keppler, J. (2018). The role of the brain in conscious processes: A new way of looking at the neural correlates of consciousness. Frontiers in psychology, 9, 1346.](https://doi.org/10.3389/fpsyg.2018.01346) — This feels very fringe to me, but similar kinds of theories and thoughts have crossed my mind. * [Pepperell, R. (2018). Consciousness as a physical process caused by the organization of energy in the brain. Frontiers in Psychology, 2091.](https://doi.org/10.3389/fpsyg.2018.02091) * [Fallon, F. (2016). Integrated information theory of consciousness. Internet Encyclopedia of Philosophy, 23.](https://iep.utm.edu/integrated-information-theory-of-consciousness/) * [Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: from consciousness to its physical substrate. Nature Reviews Neuroscience, 17(7), 450-461.](https://doi.org/10.1038/nrn.2016.44) * [Tegmark, M. (2015). Consciousness as a state of matter. Chaos, Solitons & Fractals, 76, 238-270.](https://doi.org/10.1016/j.chaos.2015.03.014) * [Cerullo MA (2015) The Problem with Phi: A Critique of Integrated Information Theory. PLoS Comput Biol 11(9): e1004286.](https://doi.org/10.1371/journal.pcbi.1004286) * [Maguire, P., Moser, P., Maguire, R., & Griffith, V. (2014). Is consciousness computable? Quantifying integrated information using algorithmic information theory. arXiv preprint arXiv:1405.0126.](https://arxiv.org/abs/1405.0126) * [Oizumi M, Albantakis L, Tononi G (2014) From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0. PLoS Comput Biol 10(5): e1003588.](https://doi.org/10.1371/journal.pcbi.1003588) * [(2012) Consciousness in Human and Non-human Animals. Francis Crick Memorial Conference. 7 July.](https://fcmconference.org/) * [Buckner, R. L. (2012). The serendipitous discovery of the brain's default network. Neuroimage, 62(2), 1137-1145.](https://doi.org/10.1016/j.neuroimage.2011.10.035) * [Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nature reviews neuroscience, 10(1), 59-70.](https://doi.org/10.1038/nrn2555) * [Baumeister, R. F., Vohs, K. D., Nathan DeWall, C., & Zhang, L. (2007). How emotion shapes behavior: Feedback, anticipation, and reflection, rather than direct causation. Personality and social psychology review, 11(2), 167-203.](https://doi.org/10.1177%2F1088868307301033) * [Northoff, G., Heinzel, A., De Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain—a meta-analysis of imaging studies on the self. Neuroimage, 31(1), 440-457.](https://doi.org/10.1016/j.neuroimage.2005.12.002) * [Tononi, G. (2004). An information integration theory of consciousness. BMC neuroscience, 5(1), 1-22.](https://doi.org/10.1186/1471-2202-5-42) ## Psychadelic Effects on Consciousness and Brain Networks * [Nani, A., & Hashmi, J. A. (2022). The interplay of consciousness and attention in atypical contexts of experience. Frontiers in Neuroscience, 658.](https://doi.org/10.3389/fnins.2022.913913) * [Johnson, M. W., Hendricks, P. S., Barrett, F. S., & Griffiths, R. R. (2019). Classic psychedelics: An integrative review of epidemiology, therapeutics, mystical experience, and brain network function. Pharmacology & therapeutics, 197, 83-102.](https://doi.org/10.1016/j.pharmthera.2018.11.010) * [Kraehenmann, R. (2017). Dreams and psychedelics: neurophenomenological comparison and therapeutic implications. Current neuropharmacology, 15(7), 1032-1042.](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652011/) * [Preller, K. H., & Vollenweider, F. X. (2016). Phenomenology, structure, and dynamic of psychedelic states. Behavioral neurobiology of psychedelic drugs, 221-256.](https://doi.org/10.1007/7854_2016_459)