# Jupyter Notebook
* On GPU node
`jupyter lab --no-browser --port 7077`
* From local machine
`ssh -t -t am2455@wulver.njit.edu -L 7077:localhost:8088 ssh n0002 -L 8088:localhost:7077`
# Conda
Create `.condarc` in $HOME directory and add the following
```bash!
auto_activate_base: false
envs_dirs:
- /path/to/custom/envs/directory
pkgs_dirs:
- /research/arcs/am2455/softwares/conda/pkgs
channels:
- conda-forge
```
If you want to automate package installations without user prompts, you can use the `-y` option like this:
`conda install -y package_name`
## Write Conda installation log
`conda install -y package_name > install_log.txt 2>&1`
## PyTorch
### Install sklearnex
`conda install -c anaconda scikit-learn-intelex`
`python -m sklearnex CBert_SVM.py`
### Documentation of sklearnex
https://intel.github.io/scikit-learn-intelex/
```bash!
precision recall f1-score support
0 0.80 0.71 0.75 4631
1 0.92 0.95 0.93 16424
accuracy 0.90 21055
macro avg 0.86 0.83 0.84 21055
weighted avg 0.89 0.90 0.89 21055
```
## Set the CUDA_HOME environment variable with this command.
`conda env config vars set CUDA_HOME="/path/to/environment" -n env`
Please note that you should replace `/path/to/environment` with the actual path of your Conda environment, and replace `env` with the name of your Conda environment.
#
`conda create -n tf-gpu tensorflow-gpu`
# Create executable from Pyton script
`pyinstaller --onefile sq.py`