# Jupyter Notebook * On GPU node `jupyter lab --no-browser --port 7077` * From local machine `ssh -t -t am2455@wulver.njit.edu -L 7077:localhost:8088 ssh n0002 -L 8088:localhost:7077` # Conda Create `.condarc` in $HOME directory and add the following ```bash! auto_activate_base: false envs_dirs: - /path/to/custom/envs/directory pkgs_dirs: - /research/arcs/am2455/softwares/conda/pkgs channels: - conda-forge ``` If you want to automate package installations without user prompts, you can use the `-y` option like this: `conda install -y package_name` ## Write Conda installation log `conda install -y package_name > install_log.txt 2>&1` ## PyTorch ### Install sklearnex `conda install -c anaconda scikit-learn-intelex` `python -m sklearnex CBert_SVM.py` ### Documentation of sklearnex https://intel.github.io/scikit-learn-intelex/ ```bash! precision recall f1-score support 0 0.80 0.71 0.75 4631 1 0.92 0.95 0.93 16424 accuracy 0.90 21055 macro avg 0.86 0.83 0.84 21055 weighted avg 0.89 0.90 0.89 21055 ``` ## Set the CUDA_HOME environment variable with this command. `conda env config vars set CUDA_HOME="/path/to/environment" -n env` Please note that you should replace `/path/to/environment` with the actual path of your Conda environment, and replace `env` with the name of your Conda environment. # `conda create -n tf-gpu tensorflow-gpu` # Create executable from Pyton script `pyinstaller --onefile sq.py`