--- disqus: abhyas29 --- # Sequence & Series [TOC] ###### tags: `Mathematics` [All Mathematics Formula by Abhyas here](/@abhyas/maths_formula) Please see [README](/@abhyas/maths_formula#README) if this is the first time you are here. ## Formula List |Arithmatic Progression|| |:-|:-| |General Term|$T_n=a+(n-1)d$| |Sum of $n$ terms |$S_n=\frac{n}{2}[2a+(n-1)d]=\frac{n}{2}[a+l]$| |$a, b, c \rightarrow$ AP|$2b=a+c$| |AM B/w two terms $a$ and $b$|$b=\frac{a+c}{2}$| |AM of $n$ terms|$\frac{a_1+ a_2+ _3+ ...+a_n}{n}$| |Inserting $n$ AM between $a$ and $b$|$A_n= a+nd$| |Geometric Progression|| |:-|:-| |General Term|$T_n = ar^{n-1}$| |Sum of $n$ terms|$S_n=\frac{a(r^n-1)}{r-1}$| |Sum of $\infty$ terms|$S_\infty=\frac{a}{(1-r)}(\begin{vmatrix}r\end{vmatrix}<1)$| |$a, b, c \rightarrow$ GP|$b^2=ac$| |GM B/w two terms $a$ and $b$|$b=\sqrt{ac}; a \,\&\, b>0\\b=-\sqrt{ac}; a \,\&\, b<0$| |GM of $n$ terms|$(a_1.a_2.a_3....a_n)^{\frac{1}{n}}$| |Inserting $n$ GM between $a$ and $b$|$G_n=ar^n$| |Harmonic Progression|| |:-|:-| |HM B/w two terms $a$ and $b$|$b=\frac{2ac}{a+c}$| |HM of $n$ terms|$\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_n}}$| |Inserting $n$ HM between $a$ and $b$|$(\frac{1}{H_n})^{-1}=(\frac{1}{a}+nd)^{-1}$| |Relation B/w A, G & H|| |:-|:-| |Relation|$G^2=AH$| |If $a, b \in \mathbb{R^+}$|$AM>GM>HM$| |If $a, b \in \mathbb{R^-}$|$AM<GM<HM$| |If $a, b \in \mathbb{R}$ and $a=b$ |$AM=GM=HM$| |Arithmetic Geometric Progression|| |:-|:-| |Sum of $n$ terms|Put $S =$ sum;<br> take $rS$;<br> Subtract $S-rS$;<br>Solve for $S$ | |Important Summations | |:-| |$\sum{1}=n$| |$\sum{n}=\frac{n(n+1)}{2}$| |$\sum{n^2}=\frac{n(n+1)(2n+1)}{6}$| |$\sum{n^3}=\left(\frac{n(n+1)}{2}\right) ^2$| |Difference Method|| |-|-| |$n$^th^ term from sum|$T_n=S_n-S_{n-1}$| ## Arithmetic Progression (AP) AP is a sequence whose terms increase or decrease by a _fixed number_. This fixed number is called the _common difference_. eg. $1, 4, 7, 10, 13,...$ ### General Term If $a$ is the first term and $d$ the common difference then series is: $a, (a+d), (a+2d), (a+3d),...$ General term = |$T_n=a+(n-1)d$| |-| ### Sum of n Terms |$S_n=\frac{n}{2}[2a+(n-1)d]=\frac{n}{2}[a+l]$| |-| where $l$ is the last term Proof: $S_n=T_1+T_2+T_3+...+T_n$ $S_n=a+(a+d)+(a+2d)+...+\{a+(n-1)d\}$ ---(1) $S_n=\{a+(n-1)d\}+\{a+(n-2)d\}+...+a$ ---(2) By reversing (1) Adding (1) and (2) $\therefore2S_n=\{2a+(n-1)d\}+\{2a+(n-1)d\}+...+\{2a+(n-1)d\}$ $\therefore2S_n=n[2a+(n-1)d]$ $\therefore S_n=\frac{n}{2}[2a+(n-1)d]=\frac{n}{2}[a+l]$ ### n^th^ term from Sum |$T_n=S_n-S_{n-1}$| |-| Proof: $S_5=T_1+T_2+T_3+T_4+T_5$ $S_4=T_1+T_2+T_3+T_4$ $\therefore S_5-S_4=T_5$ ### Properties of AP 1. The common difference can be zero , positive or negative. 2. If $a, b, c$ in AP then |$2b=a+c$| |-| Proof: $a, b, c$ are in AP $\therefore (b-a)=(c-b)\\ b+b=a+c\\ 2b=a+c$ 3. The sum of the terms of an AP equidistant from the beginning & end is constant and equal to the sum of first & last terms 4. If each term of an AP is increased, decreased, multiplied or divided by the same non-zero number, then the resulting sequence is also an AP. ### Considering number in AP |3 Numbers: $(a-d), a, (a+d)$| |-| |4 Numbers: $(a-2d), (a-d), (a+d), (a+2d)$| |-| |5 Numbers: $(a-2d),(a-d),a,(a+d),(a+2d)$| |-| ### Common AP 1. Sum of First n natural numbers |$\frac{n(n-1)}{2}$| |-| ### Arithmetic Mean #### AM between two terms If three terms are in AP then the middle term is called AM between the other two, so if $a, b, c$ are in AP. $b$ is AM of $a$ and $c$ |$b=\frac{a+c}{2}$| |-| #### AM for n terms AM for any $n$ positive number $a_1, a_2, a_3,...,a_n$ is |$A=\frac{a_1+ a_2+ a_3,...,a_n}{n}$| |-| #### Inserting n AM between two terms Inserting n AM between $a$ and $b$. The new AP is $a, A_1, A_2, A_3,...,A_n, b$ First Term $= a=T_1$ Second Term $=A_1=T_2$ ... Last Term $=b=T_{n+2}$ Use $T_{n+2}=b=a+(n+1)d$ to find $d$ All inserted means can be found using $a$ and $d$ as $A_1=a+d\\ A_2=a+2d\\ A_n=a+nd$ ## Geometric Progression (GP) GP. is a sequence of numbers whose first term is non zero & each of the succeeding terms is equal to the proceeding terms multiplied by a constant. eg. $1, 2, 4, 8, 16,...$ ### General Term If $a$ if the first term and $r$ the common ratios then series is: $a, ar, ar^2, a^3,../$ General term = |$T_n=ar^{n-1}$| |-| ### Sum of n Terms |$S_n=\frac{a(1-r^n)}{1-r}$| |-| where $r\ne 1$ Proof: $\,\,\,\,S_n=a+ar+ar^2+...+ar^{n-1}$ ---(1) $rS_n=\quad\quad ar+ar^2+...+ar^{n-1}+ar^n$ ---(2) Taking (1)-(2) $S_n-rS_n= a-ar^n$ $S_n(1-r)=a(1-r^n)$ $S_n=\frac{a(1-r^n)}{1-r}$ ### Sum of infinite Terms |$S_\infty=\frac{a}{(1-r)}(\begin{vmatrix}r\end{vmatrix}<1)$| |-| Proof: $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32},...$ here $r=\frac{1}{2}$ If $|r|<1$ then it is an infinite series $\because S_n=\frac{a(1-r^n)}{(1-r)}$ $\therefore S_\infty=\frac{a(1-r^\infty)}{(1-r)}$ $\because r$ is a fraction $\,\therefore r^\infty$ is negligible $\therefore S_\infty=\frac{a}{(1-r)}$ ### Properties of GP 1. The common ratio can be positive or negative but not zero. 2. If a, b, c in GP then |$\frac{b}{a}=\frac{c}{b}$| |-| 3. The product if the terms of a GP equidistant from the beginning & end is constant and equal to the product of first & last term. 4. If each term of a GP is multiplied or divided or raised to the power by the same non zero number, then the resulting sequence is also a GP. 5. If $a_1, a_2 ,a_3,...$ and $b_1, b_2, b_3,...$ are two GP with common ratio $r_1$ and $r_2$ respectively then the sequence $a_1b_2, a_2b_2, a_3b_3,..$ are also a GP with common ratio $r_1,r_2$ 6. if $a_1, a_2, a_3,...$ are in GP, where $a_i>0$, then $\log{a_1}, \log{a_2}, \log{a_3},...$ are in AP and its converse is also true ### Considering number in AP |3 Numbers: $\frac{a}{r},a,ar$| |-| |4 Numbers: $\frac{a}{r^2}, \frac{a}{r}. ar,ar^2$| |-| |5 Numbers: $\frac{a}{r^2}, \frac{a}{r},a,ar,ar^2$| |-| ### Geometric Mean #### GM between two terms if $a, b, c$ are in GP, b is the GM between $a$ and $c$ |$b=\sqrt{ac}; a \,\&\, b>0\\b=-\sqrt{ac}; a \,\&\, b<0$| |-| #### GM for n terms GM for any $n$ positive number, $a_1, a_2, a_3,...,a_n$ is |$(a_1.a_2.a_3.....a_n)^{\frac{1}{n}}$| |-| #### Inserting n GM between two terms Inserting n GM beween $a$ and $b$. The new GP is $a,G_1, G_2, G_3,...,G_n, b$ First Term $= a = T_1$ Second Term $= G_1 = T_2$ ... Last Term $= b = T_{n+2}$ Use $T_{n+2}=\frac{a(1-r^{n+1})}{1-r}$ to find $r$ All inserted means can be found using $a$ and $r$ as $G_1=ar\\ G_2=ar^2\\ ...\\ G_n=ar^n$ ## Harmonic Progression (HP) A sequence is said to be in HP, if the reciprocals of its terms are in AP. $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4},...$ ### Harmonic Mean #### HM between two terms if $a,b,c$ are in HP, b is the HM between $a$ and $c$ |$b=\frac{2ac}{a+c}$| |-| #### HM for n terms |$\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_n}}$| |-| Method: 1. Take reciprocal for each term to form an AP 2. Add n terms and divide by n 3. Take reciprocal of the fraction #### Inserting n GM between two terms 1. Take reciprocal for each term to form an AP 2. Find $d$ 3. Find $n$ AM between $\frac{1}{a}$ and $\frac{1}{b}$ 4. Take reciprocal for each term to from the HP ## Relation between AM, GM, HM $\because A=\frac{a+b}{2}$, $G=\sqrt{ab}$ and $H=\frac{2ab}{a+b}$ |$\therefore G^2=AH$| |-| ### Inequality between A, G, H ### For positive Distinct Numbers If $a, b \in \mathbb{R^+}$ |$AM>GM>HM$| |-| Taking, $A-G\\ =\frac{a+b}{2}-\sqrt{ab}\\ =\frac{a+b-2\sqrt{ab}}{2}\\ =\frac{(\sqrt{a}-=\sqrt{b})^2}{2}>0\\ \therefore A-G>0\\ \therefore A>G$ Again, $G-H\\ =\sqrt{ab}-\frac{2ab}{a+b}\\ =\frac{(a+b)\sqrt{ab}-2ab}{a+b}\\ =(\sqrt{ab})(1-\frac{2\sqrt{ab}}{a+b})\\ =\frac{(\sqrt{ab})(\sqrt{a}-\sqrt{b})^2}{a+b}>0\\ \therefore G-H>0\\ \therefore G>H$ ### For Negative Distince Numbers If $a, b \in \mathbb{R^-}$ |$AM<GM<HM$| |-| ### For Equal Numbers If $a, b \in \mathbb{R}$ and $a=b$ |$AM=GM=HM$| |-| ## Arithmetic Geometric Progression (AGP) $a, (a+d), (a+2d), (a+3d),...\rightarrow$ AP $b, br, br^2, br^3,...\rightarrow$ GP $ab, br(a+d),br^2(a+2d),...\rightarrow$ AGP $1(x)+3(x^2)+5(x^3)+7(x^4)+...\rightarrow$ AGP ### Sum of n Terms $S=1(x)+3(x^2)+5(x^3)+7(x^4)+...\\ xS=1(x^2)+3(x^3)+5(x^4)+7(x^5)+...\\ S-xS=1(x)+2(x^2)+2(x^3)+...\\ (1-x)S=x+2x^2(1+x+x^2+...)$ ## Important Summations |$\sum_{r=1}^n{1}=n$| |-| $\sum_{r=1}^n{1}=1+1+1+1+1+...$ upto n terms $=n$ |$\sum_{r=1}^n{r}=\frac{n(n+1)}{2}$| |-| $\sum_{r=1}^n{r}=1+2+3+4+...$ upto n terms $=\frac{n(n+1)}{2}$ |$\sum_{r=1}^n{r^2}=\frac{n(n+1)(2n+1)}{6}$| |-| $\sum_{r=1}^n{r^2}=1^2+2^2+3^2+4^2+...$ upto $n$ terms= $\frac{n(n+1)(2n+1)}{6}$ |$\sum_{r=1}^n{r^3}=\left(\frac{n(n+1)}{2}\right) ^2$| |-| $\sum_{r=1}^n{r^3}=1^3+2^3+3^3+4^3+...$ upto $n$ terms= $\left(\frac{n(n+1)}{2}\right) ^2$ ## Difference Method |$T_n=S_n-S_{n-1}$| |-| ## Licensing and Links [All Mathematics Formula by Abhays here](/Uhf7AR-EQcKrvHaPG9FSXg) <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.