Mathematics
All Mathematics Formula by Abhyas here
Please see README if this is the first time you are here.
Arithmatic Progression | |
---|---|
General Term | \(T_n=a+(n-1)d\) |
Sum of \(n\) terms | \(S_n=\frac{n}{2}[2a+(n-1)d]=\frac{n}{2}[a+l]\) |
\(a, b, c \rightarrow\) AP | \(2b=a+c\) |
AM B/w two terms \(a\) and \(b\) | \(b=\frac{a+c}{2}\) |
AM of \(n\) terms | \(\frac{a_1+ a_2+ _3+ ...+a_n}{n}\) |
Inserting \(n\) AM between \(a\) and \(b\) | \(A_n= a+nd\) |
Geometric Progression | |
---|---|
General Term | \(T_n = ar^{n-1}\) |
Sum of \(n\) terms | \(S_n=\frac{a(r^n-1)}{r-1}\) |
Sum of \(\infty\) terms | \(S_\infty=\frac{a}{(1-r)}(\begin{vmatrix}r\end{vmatrix}<1)\) |
\(a, b, c \rightarrow\) GP | \(b^2=ac\) |
GM B/w two terms \(a\) and \(b\) | \(b=\sqrt{ac}; a \,\&\, b>0\\b=-\sqrt{ac}; a \,\&\, b<0\) |
GM of \(n\) terms | \((a_1.a_2.a_3....a_n)^{\frac{1}{n}}\) |
Inserting \(n\) GM between \(a\) and \(b\) | \(G_n=ar^n\) |
Harmonic Progression | |
---|---|
HM B/w two terms \(a\) and \(b\) | \(b=\frac{2ac}{a+c}\) |
HM of \(n\) terms | \(\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_n}}\) |
Inserting \(n\) HM between \(a\) and \(b\) | \((\frac{1}{H_n})^{-1}=(\frac{1}{a}+nd)^{-1}\) |
Relation B/w A, G & H | |
---|---|
Relation | \(G^2=AH\) |
If \(a, b \in \mathbb{R^+}\) | \(AM>GM>HM\) |
If \(a, b \in \mathbb{R^-}\) | \(AM<GM<HM\) |
If \(a, b \in \mathbb{R}\) and \(a=b\) | \(AM=GM=HM\) |
Arithmetic Geometric Progression | |
---|---|
Sum of \(n\) terms | Put \(S =\) sum; take \(rS\); Subtract \(S-rS\); Solve for \(S\) |
Important Summations |
---|
\(\sum{1}=n\) |
\(\sum{n}=\frac{n(n+1)}{2}\) |
\(\sum{n^2}=\frac{n(n+1)(2n+1)}{6}\) |
\(\sum{n^3}=\left(\frac{n(n+1)}{2}\right) ^2\) |
Difference Method | |
---|---|
\(n\)th term from sum | \(T_n=S_n-S_{n-1}\) |
AP is a sequence whose terms increase or decrease by a fixed number. This fixed number is called the common difference.
eg. \(1, 4, 7, 10, 13,...\)
If \(a\) is the first term and \(d\) the common difference then series is:
\(a, (a+d), (a+2d), (a+3d),...\)
General term =
\(T_n=a+(n-1)d\) |
---|
\(S_n=\frac{n}{2}[2a+(n-1)d]=\frac{n}{2}[a+l]\) |
---|
where \(l\) is the last term |
Proof:
\(S_n=T_1+T_2+T_3+...+T_n\)
\(S_n=a+(a+d)+(a+2d)+...+\{a+(n-1)d\}\) –-(1)
\(S_n=\{a+(n-1)d\}+\{a+(n-2)d\}+...+a\) –-(2) By reversing (1)
Adding (1) and (2)
\(\therefore2S_n=\{2a+(n-1)d\}+\{2a+(n-1)d\}+...+\{2a+(n-1)d\}\)
\(\therefore2S_n=n[2a+(n-1)d]\)
\(\therefore S_n=\frac{n}{2}[2a+(n-1)d]=\frac{n}{2}[a+l]\)
\(T_n=S_n-S_{n-1}\) |
---|
Proof:
\(S_5=T_1+T_2+T_3+T_4+T_5\)
\(S_4=T_1+T_2+T_3+T_4\)
\(\therefore S_5-S_4=T_5\)
\(2b=a+c\) |
---|
Proof: |
\(a, b, c\) are in AP |
$\therefore (b-a)=(c-b)\ |
b+b=a+c\ |
2b=a+c$ |
3 Numbers: \((a-d), a, (a+d)\) |
---|
4 Numbers: \((a-2d), (a-d), (a+d), (a+2d)\) |
---|
5 Numbers: \((a-2d),(a-d),a,(a+d),(a+2d)\) |
---|
\(\frac{n(n-1)}{2}\) |
---|
If three terms are in AP then the middle term is called AM between the other two, so if \(a, b, c\) are in AP. \(b\) is AM of \(a\) and \(c\)
\(b=\frac{a+c}{2}\) |
---|
AM for any \(n\) positive number \(a_1, a_2, a_3,...,a_n\) is
\(A=\frac{a_1+ a_2+ a_3,...,a_n}{n}\) |
---|
Inserting n AM between \(a\) and \(b\). The new AP is
\(a, A_1, A_2, A_3,...,A_n, b\)
First Term \(= a=T_1\)
Second Term \(=A_1=T_2\)
…
Last Term \(=b=T_{n+2}\)
Use \(T_{n+2}=b=a+(n+1)d\) to find \(d\)
All inserted means can be found using \(a\) and \(d\) as
\(A_1=a+d\\
A_2=a+2d\\
A_n=a+nd\)
GP. is a sequence of numbers whose first term is non zero & each of the succeeding terms is equal to the proceeding terms multiplied by a constant.
eg. \(1, 2, 4, 8, 16,...\)
If \(a\) if the first term and \(r\) the common ratios then series is:
\(a, ar, ar^2, a^3,../\)
General term =
\(T_n=ar^{n-1}\) |
---|
\(S_n=\frac{a(1-r^n)}{1-r}\) |
---|
where \(r\ne 1\) |
Proof:
\(\,\,\,\,S_n=a+ar+ar^2+...+ar^{n-1}\) –-(1)
\(rS_n=\quad\quad ar+ar^2+...+ar^{n-1}+ar^n\) –-(2)
Taking (1)-(2)
\(S_n-rS_n= a-ar^n\)
\(S_n(1-r)=a(1-r^n)\)
\(S_n=\frac{a(1-r^n)}{1-r}\)
\(S_\infty=\frac{a}{(1-r)}(\begin{vmatrix}r\end{vmatrix}<1)\) |
---|
Proof:
\(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32},...\) here \(r=\frac{1}{2}\)
If \(|r|<1\) then it is an infinite series
\(\because S_n=\frac{a(1-r^n)}{(1-r)}\)
\(\therefore S_\infty=\frac{a(1-r^\infty)}{(1-r)}\)
\(\because r\) is a fraction \(\,\therefore r^\infty\) is negligible
\(\therefore S_\infty=\frac{a}{(1-r)}\)
\(\frac{b}{a}=\frac{c}{b}\) |
---|
3 Numbers: \(\frac{a}{r},a,ar\) |
---|
4 Numbers: \(\frac{a}{r^2}, \frac{a}{r}. ar,ar^2\) |
---|
5 Numbers: \(\frac{a}{r^2}, \frac{a}{r},a,ar,ar^2\) |
---|
if \(a, b, c\) are in GP, b is the GM between \(a\) and \(c\)
\(b=\sqrt{ac}; a \,\&\, b>0\\b=-\sqrt{ac}; a \,\&\, b<0\) |
---|
GM for any \(n\) positive number, \(a_1, a_2, a_3,...,a_n\) is
\((a_1.a_2.a_3.....a_n)^{\frac{1}{n}}\) |
---|
Inserting n GM beween \(a\) and \(b\). The new GP is
\(a,G_1, G_2, G_3,...,G_n, b\)
First Term \(= a = T_1\)
Second Term \(= G_1 = T_2\)
…
Last Term \(= b = T_{n+2}\)
Use \(T_{n+2}=\frac{a(1-r^{n+1})}{1-r}\) to find \(r\)
All inserted means can be found using \(a\) and \(r\) as
\(G_1=ar\\ G_2=ar^2\\ ...\\ G_n=ar^n\)
A sequence is said to be in HP, if the reciprocals of its terms are in AP.
\(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4},...\)
if \(a,b,c\) are in HP, b is the HM between \(a\) and \(c\)
\(b=\frac{2ac}{a+c}\) |
---|
\(\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_n}}\) |
---|
Method:
\(\because A=\frac{a+b}{2}\), \(G=\sqrt{ab}\) and \(H=\frac{2ab}{a+b}\)
\(\therefore G^2=AH\) |
---|
If \(a, b \in \mathbb{R^+}\)
\(AM>GM>HM\) |
---|
Taking, \(A-G\\ =\frac{a+b}{2}-\sqrt{ab}\\ =\frac{a+b-2\sqrt{ab}}{2}\\ =\frac{(\sqrt{a}-=\sqrt{b})^2}{2}>0\\ \therefore A-G>0\\ \therefore A>G\)
Again, \(G-H\\ =\sqrt{ab}-\frac{2ab}{a+b}\\ =\frac{(a+b)\sqrt{ab}-2ab}{a+b}\\ =(\sqrt{ab})(1-\frac{2\sqrt{ab}}{a+b})\\ =\frac{(\sqrt{ab})(\sqrt{a}-\sqrt{b})^2}{a+b}>0\\ \therefore G-H>0\\ \therefore G>H\)
If \(a, b \in \mathbb{R^-}\)
\(AM<GM<HM\) |
---|
If \(a, b \in \mathbb{R}\) and \(a=b\)
\(AM=GM=HM\) |
---|
\(a, (a+d), (a+2d), (a+3d),...\rightarrow\) AP
\(b, br, br^2, br^3,...\rightarrow\) GP
\(ab, br(a+d),br^2(a+2d),...\rightarrow\) AGP
\(1(x)+3(x^2)+5(x^3)+7(x^4)+...\rightarrow\) AGP
\(S=1(x)+3(x^2)+5(x^3)+7(x^4)+...\\ xS=1(x^2)+3(x^3)+5(x^4)+7(x^5)+...\\ S-xS=1(x)+2(x^2)+2(x^3)+...\\ (1-x)S=x+2x^2(1+x+x^2+...)\)
\(\sum_{r=1}^n{1}=n\) |
---|
\(\sum_{r=1}^n{1}=1+1+1+1+1+...\) upto n terms \(=n\)
\(\sum_{r=1}^n{r}=\frac{n(n+1)}{2}\) |
---|
\(\sum_{r=1}^n{r}=1+2+3+4+...\) upto n terms \(=\frac{n(n+1)}{2}\)
\(\sum_{r=1}^n{r^2}=\frac{n(n+1)(2n+1)}{6}\) |
---|
\(\sum_{r=1}^n{r^2}=1^2+2^2+3^2+4^2+...\) upto \(n\) terms= \(\frac{n(n+1)(2n+1)}{6}\)
\(\sum_{r=1}^n{r^3}=\left(\frac{n(n+1)}{2}\right) ^2\) |
---|
\(\sum_{r=1}^n{r^3}=1^3+2^3+3^3+4^3+...\) upto \(n\) terms= \(\left(\frac{n(n+1)}{2}\right) ^2\)
\(T_n=S_n-S_{n-1}\) |
---|
All Mathematics Formula by Abhays here
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.