---
disqus: abhyas29
---
# Limit
###### tags: `Mathematics`
[TOC]
[All Mathematics Formula by Abhyas here](/@abhyas/maths_formula)
Please see [README](/@abhyas/maths_formula#README) if this is the first time you are here.
## Method of Limits
### Direct Substitution
Put value of x if no indefinite from occurs.
$\lim_{x \to 2} \frac{x+2}{x^2+4}=\frac{2+2}{2^2+4}=\frac{1}{2}$
Limit is only solved for $\frac{0}{0}$ or $\frac{\infty}{\infty}$ form. Else use direct substation.
### Factorization Method
If elimination of indefinite form possible using factorization then cancel it out.
$\lim_{x \to 3} \frac{x^2-5x+6}{x-3}$
at $x=3$, $\frac{3^2-5 \times 3+6}{3-3}=\frac{0}{0}$ is undefined. So factorize as:
$1$
*Better use L'Hôpital's rule*
### Rationalization Method
Multiply numerator and denominator by rationalizing factor.
$\lim_{x \to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$
at $x=0$, $\frac{0}{0}$ is undefined. So rationalize as:
$\lim_{x \to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} \times \frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}$
$=\lim_{x \to 0} \frac{2}{(\sqrt{1+x}+\sqrt{1-x})}$
at $x=0$, $\frac{2}{\sqrt{1+0}+\sqrt{1-0}}=1$
*Better use L'Hôpital's rule*
### limit when $x \to \infty$
### L'Hôpital's rule
**Required Condition:** $\lim_{x \to a}\frac{f(x)}{g(x)}=\frac{f(a)}{g(a)}=\frac{0}{0}$ or $\frac{\infty}{\infty}$
and according to the rule, differentiate numerator and denominator *separately*
$\lim_{x \to a} \frac{\frac{d}{dx}f(x)}{\frac{d}{dx}g(x)}$
## Licensing and Links
[All Mathematics Formula by Abhays here](https://hackmd.io/@abhyas/maths_formula)
<a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/88x31.png" /></a>
This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.