--- disqus: abhyas29 --- # Limit ###### tags: `Mathematics` [TOC] [All Mathematics Formula by Abhyas here](/@abhyas/maths_formula) Please see [README](/@abhyas/maths_formula#README) if this is the first time you are here. ## Method of Limits ### Direct Substitution Put value of x if no indefinite from occurs. $\lim_{x \to 2} \frac{x+2}{x^2+4}=\frac{2+2}{2^2+4}=\frac{1}{2}$ Limit is only solved for $\frac{0}{0}$ or $\frac{\infty}{\infty}$ form. Else use direct substation. ### Factorization Method If elimination of indefinite form possible using factorization then cancel it out. $\lim_{x \to 3} \frac{x^2-5x+6}{x-3}$ at $x=3$, $\frac{3^2-5 \times 3+6}{3-3}=\frac{0}{0}$ is undefined. So factorize as: $1$ *Better use L'Hôpital's rule* ### Rationalization Method Multiply numerator and denominator by rationalizing factor. $\lim_{x \to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ at $x=0$, $\frac{0}{0}$ is undefined. So rationalize as: $\lim_{x \to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} \times \frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}$ $=\lim_{x \to 0} \frac{2}{(\sqrt{1+x}+\sqrt{1-x})}$ at $x=0$, $\frac{2}{\sqrt{1+0}+\sqrt{1-0}}=1$ *Better use L'Hôpital's rule* ### limit when $x \to \infty$ ### L'Hôpital's rule **Required Condition:** $\lim_{x \to a}\frac{f(x)}{g(x)}=\frac{f(a)}{g(a)}=\frac{0}{0}$ or $\frac{\infty}{\infty}$ and according to the rule, differentiate numerator and denominator *separately* $\lim_{x \to a} \frac{\frac{d}{dx}f(x)}{\frac{d}{dx}g(x)}$ ## Licensing and Links [All Mathematics Formula by Abhays here](https://hackmd.io/@abhyas/maths_formula) <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc/4.0/88x31.png" /></a> This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.