# Basic Methods of Data Analysis Exam WS2019 ###### tags: `Exam` ![](https://i.imgur.com/lIvYpVS.png) A) 5 B) 5 C) 7.5 --- ![](https://i.imgur.com/XSXWk2x.png) A) | X | absolute frequency | relative frequency | | --- |:------------------:|:------------------:| | 1 | 1 | $\frac{1}{11}$ | | 2 | 3 | $\frac{3}{11}$ | | 3 | 5 | $\frac{5}{11}$ | | 4 | 2 | $\frac{2}{11}$ | B) Mode: 3 Range: 3 C) Q1: 2 MED: 3 Q3: 3 ---- ![](https://i.imgur.com/EldhiaN.png) A) 0.8 B) 0,06 --- ![](https://i.imgur.com/iIJDldp.png) ![](https://i.imgur.com/83Xsyku.png) ![](https://i.imgur.com/skRQxZs.png) --- ![](https://i.imgur.com/2ox4WtR.png) A) $\begin{pmatrix}2&1&0\\ 0&2&4\\ 1&3&5\end{pmatrix}\begin{pmatrix}x\\ y\\ z\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\end{pmatrix}$ $x=z=k, y=-2k$ The are linearly dependent. B) 2) --- ![](https://i.imgur.com/cy93tv6.png) A) $\begin{pmatrix}2&4\\ \:\:1&3\end{pmatrix}\cdot \:x=\begin{pmatrix}2\\ \:\:3\end{pmatrix}$ $\mathrm{Multiply\:both\:sides\:of\:the\:equation\:by}\:\begin{pmatrix}2&4\\ 1&3\end{pmatrix}^{-1}\:\mathrm{from\:the\:left}$ $AX=B\quad \Rightarrow \quad \:X=A^{-1}B$ $x=\begin{pmatrix}2&4\\ 1&3\end{pmatrix}^{-1}\begin{pmatrix}2\\ 3\end{pmatrix}$ $x=\begin{pmatrix}-3\\ 2\end{pmatrix}$ B) L = {{1, 0}, {1/2, 1}} U={{2, 4}, {0, 1}} --- ![](https://i.imgur.com/1fI4U1m.png) A) * T * F * F B) * F B->A * T * F * T * F * T --- ![](https://i.imgur.com/Z1lcikp.png) $\mathrm{Find\:the\:eigenvalues\:for\:}\begin{pmatrix}3&-1\\ -1&3\end{pmatrix}$ $\mathrm{The\:eigenvalues\:of}\:A\:\mathrm{are\:the\:roots\:of\:the\:characteristic\:equation}\:\det \left(A-λ\:I\right)=0$ $\mathrm{The\:eigenvalues\:are:\:} λ=4,\:λ=2$ $\mathrm{Find\:the\:eigenvectors\:for\:}\begin{pmatrix}3&-1\\ -1&3\end{pmatrix}$ $\mathrm{To\:find\:the\:eigenvectors}\:η,\:\mathrm{solve\:}\left(A-λ\:I\right)η=0\mathrm{\:for\:each\:eigenvalue}\:λ$ $=\begin{pmatrix}-1\\ 1\end{pmatrix},\:\begin{pmatrix}1\\ 1\end{pmatrix}$ $\mathrm{Find\:the\:eigenvalues\:for\:}\begin{pmatrix}36&-28\\ -28&36\end{pmatrix}$ $\mathrm{The\:eigenvalues\:of}\:A\:\mathrm{are\:the\:roots\:of\:the\:characteristic\:equation}\:\det \left(A-λ\:I\right)=0$ $\mathrm{The\:eigenvalues\:are:} \: λ=64,\:λ=8$ $\mathrm{Find\:the\:eigenvectors\:for\:}\begin{pmatrix}36&-28\\ -28&36\end{pmatrix}$ $\mathrm{To\:find\:the\:eigenvectors}\:η,\:\mathrm{solve\:}\left(A-λ\:I\right)η=0\mathrm{\:for\:each\:eigenvalue}\:λ$ $=\begin{pmatrix}-1\\ 1\end{pmatrix},\:\begin{pmatrix}1\\ 1\end{pmatrix}$ --- ![Task 1](https://i.imgur.com/CGHTtMB.png) --- ![Task 2](https://i.imgur.com/gh6JY1d.png) ![](https://i.imgur.com/YYKfb0t.png) --- ![Task 3](https://i.imgur.com/gMT9uJY.png) A) 0,4 B) 0,6 C) $\frac{4}{9}$ are dependent (?) D) $\frac{6}{9}$ are dependent (?) --- ![Task 4](https://i.imgur.com/Zd4ZLm1.png) A) 0,3456 B) E(head)=np=0.6*5=3 C) E(tails)=np=0.4*5=2 D) 1,2 (?) --- ![Task 5](https://i.imgur.com/URTYWVv.png) A) B) $Z = \frac{X-µ_{0}}{S} \cdot \sqrt{n} = -2$ C) $|Z| > 0,995$ -> reject Ho D) E) --- ![Task 9](https://i.imgur.com/DW1j6vw.png) * \ * T * F {0,1} * T * F $P(A) + P(B) - P(A \cup B)$ * T * * \ * \ * \