# Basic Methods of Data Analysis Exam WS2019
###### tags: `Exam`

A) 5
B) 5
C) 7.5
---

A)
| X | absolute frequency | relative frequency |
| --- |:------------------:|:------------------:|
| 1 | 1 | $\frac{1}{11}$ |
| 2 | 3 | $\frac{3}{11}$ |
| 3 | 5 | $\frac{5}{11}$ |
| 4 | 2 | $\frac{2}{11}$ |
B) Mode: 3 Range: 3
C)
Q1: 2
MED: 3
Q3: 3
----

A) 0.8
B) 0,06
---



---

A)
$\begin{pmatrix}2&1&0\\ 0&2&4\\ 1&3&5\end{pmatrix}\begin{pmatrix}x\\ y\\ z\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\end{pmatrix}$
$x=z=k, y=-2k$
The are linearly dependent.
B) 2)
---

A)
$\begin{pmatrix}2&4\\ \:\:1&3\end{pmatrix}\cdot \:x=\begin{pmatrix}2\\ \:\:3\end{pmatrix}$
$\mathrm{Multiply\:both\:sides\:of\:the\:equation\:by}\:\begin{pmatrix}2&4\\ 1&3\end{pmatrix}^{-1}\:\mathrm{from\:the\:left}$
$AX=B\quad \Rightarrow \quad \:X=A^{-1}B$
$x=\begin{pmatrix}2&4\\ 1&3\end{pmatrix}^{-1}\begin{pmatrix}2\\ 3\end{pmatrix}$
$x=\begin{pmatrix}-3\\ 2\end{pmatrix}$
B) L = {{1, 0}, {1/2, 1}} U={{2, 4}, {0, 1}}
---

A)
* T
* F
* F
B)
* F B->A
* T
* F
* T
* F
* T
---

$\mathrm{Find\:the\:eigenvalues\:for\:}\begin{pmatrix}3&-1\\ -1&3\end{pmatrix}$
$\mathrm{The\:eigenvalues\:of}\:A\:\mathrm{are\:the\:roots\:of\:the\:characteristic\:equation}\:\det \left(A-λ\:I\right)=0$
$\mathrm{The\:eigenvalues\:are:\:} λ=4,\:λ=2$
$\mathrm{Find\:the\:eigenvectors\:for\:}\begin{pmatrix}3&-1\\ -1&3\end{pmatrix}$
$\mathrm{To\:find\:the\:eigenvectors}\:η,\:\mathrm{solve\:}\left(A-λ\:I\right)η=0\mathrm{\:for\:each\:eigenvalue}\:λ$
$=\begin{pmatrix}-1\\ 1\end{pmatrix},\:\begin{pmatrix}1\\ 1\end{pmatrix}$
$\mathrm{Find\:the\:eigenvalues\:for\:}\begin{pmatrix}36&-28\\ -28&36\end{pmatrix}$
$\mathrm{The\:eigenvalues\:of}\:A\:\mathrm{are\:the\:roots\:of\:the\:characteristic\:equation}\:\det \left(A-λ\:I\right)=0$
$\mathrm{The\:eigenvalues\:are:} \: λ=64,\:λ=8$
$\mathrm{Find\:the\:eigenvectors\:for\:}\begin{pmatrix}36&-28\\ -28&36\end{pmatrix}$
$\mathrm{To\:find\:the\:eigenvectors}\:η,\:\mathrm{solve\:}\left(A-λ\:I\right)η=0\mathrm{\:for\:each\:eigenvalue}\:λ$
$=\begin{pmatrix}-1\\ 1\end{pmatrix},\:\begin{pmatrix}1\\ 1\end{pmatrix}$
---

---


---

A) 0,4
B) 0,6
C) $\frac{4}{9}$ are dependent (?)
D) $\frac{6}{9}$ are dependent (?)
---

A) 0,3456
B) E(head)=np=0.6*5=3
C) E(tails)=np=0.4*5=2
D) 1,2 (?)
---

A)
B) $Z = \frac{X-µ_{0}}{S} \cdot \sqrt{n} = -2$
C) $|Z| > 0,995$ -> reject Ho
D)
E)
---

* \
* T
* F {0,1}
* T
* F $P(A) + P(B) - P(A \cup B)$
* T
*
* \
* \
* \