## Double Angle Forumlas $\sin 2x=2\sin x \cos x$ $\cos 2x=\cos^2x-sin^2x=1-2\sin^2x=2\cos^2x-1=\frac{1-\tan^2x}{1+\tan^2x}$ $\tan 2x=\frac{2\tan x}{1-\tan^2x}$ ## Addition and Subtraction Formulas $\sin(\alpha + \beta)=\sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\sin(\alpha - \beta)=\sin \alpha \cos \beta - \cos \alpha \sin \beta$ $\cos(\alpha + \beta)=\cos \alpha \cos \beta - \sin \alpha \sin \beta$ $\cos(\alpha - \beta)=\cos \alpha \cos \beta + \sin \alpha \sin \beta$ $\tan(\alpha + \beta)=\frac{\tan \alpha + \tan \beta}{1-\tan \alpha \tan \beta}$ $\tan(\alpha - \beta)=\frac{\tan \alpha - \tan \beta}{1+\tan \alpha \tan \beta}$ ## Triple Angle Formulas $\sin 3x=3\sin x-4\sin^3 x$ $\cos 3x=\cos^3x-3\cos x$ ## Forumlas for Lowering Powers $\sin^2x = \frac{1-\cos 2x}{2}$ $\cos^2x = \frac{1+\cos 2x}{2}$ $\tan^2x = \frac{1-\cos 2x}{1+\cos 2x}$ ## Half-Angle Forumlas $\sin \frac{x}{2}=\pm \sqrt{\frac{1-\cos x}{2}}$ $\cos \frac{x}{2}=\pm \sqrt{\frac{1+\cos x}{2}}$ $\tan \frac{x}{2}=\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}$ ## Product-to-Sum Formulas $\sin(x+y)+\sin(x-y)=2\sin x\cos y$ $\sin(x+y)-\sin(x-y)=2\cos x\sin y$ $\cos(x+y)+\cos(x-y)=2\cos x\cos y$ $\cos(x+y)-\cos(x-y)=-2\sin x\sin y$ ## Sum-to-Product Forumlas $\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$ $\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$ $\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$ $\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$