# 代數方法+泰勒展開證明sin(a+b)公式 :::info 前情提要: 首先,定義如下: $$\begin{align} \sin(a)&=\sum_{i=0}^{\infty}{(-1)^i}\frac{a^{2i+1}}{(2i+1)!}\\ \cos(a)&=\sum_{i=0}^{\infty}{(-1)^i}\frac{a^{2i}}{(2i)!} \end{align}$$ 顯然,由Ratio Test,二者皆對於所有值皆絕對收斂。 因此,兩者的Cauchy Product也收斂。此為本證明之一大前提。 ::: 以下證明 $\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b)$ $\text{Proof. Let }a,b\in \mathbb{R}.$ $\text{Since both sin and cos converge absolutely for any value, by theorem 3.50, we have}$ $$\begin{align} \sin(a)\cos(b)&=\sum_{n=0}^{\infty}\sum_{k=0}^{n}\overbrace{\frac{(-1)^k}{(2k+1)!}a^{2k+1}}^{\text{sin(a) part}}\cdot\overbrace{\frac{(-1)^{n-k}}{(2(n-k))!}b^{2(n-k)}}^{\text{cos(b) part}}\\ &=\sum_{n=0}^{\infty}\sum_{k=0}^{n}(-1)^n\frac{a^{2k+1}}{(2k+1)!}\cdot\frac{b^{2(n-k)}}{(2(n-k))!}\\ \cos(a)\sin(b)&=\sum_{n=0}^{\infty}\sum_{k=0}^{n}\overbrace{\frac{(-1)^k}{(2k)!}a^{2k}}^{\text{cos(a) part}}\cdot\overbrace{\frac{(-1)^{n-k}}{(2(n-k)+1)!}b^{2(n-k)+1}}^{\text{sin(b) part}} \\ &=\sum_{n=0}^{\infty}\sum_{k=0}^{n}(-1)^n\frac{a^{2k}}{(2k)!}\cdot\frac{b^{2(n-k)+1}}{(2(n-k)+1)!}\\ \end{align}$$ $\text{That is, their cauchy product converges.}$ $\text{We now turn to analyzing }\sin(a+b).$ $$\begin{align} \sin(a+b)&=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}(a+b)^{2n+1} & \text{(definition)} \\ &=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}\sum_{k=0}^{2n+1}\frac{(2n+1)!}{k!(2n+1-k)!}a^kb^{2n+1-k} & \text{(binomial theorem)} \\ &=\sum_{n=0}^{\infty}\sum_{k=0}^{2n+1}(-1)^n\frac{a^k}{k!}\frac{b^{2n+1-k}}{(2n+1-k)!} & \text{(simplification)} \end{align}$$ $\text{Now, the monstrous looking term}$ $$\sum_{k=0}^{2n+1}(-1)^n\frac{a^k}{k!}\frac{b^{2n+1-k}}{(2n+1-k)!}$$ $\text{seems to be a pain in the ass. However, it'll no longer be, if we'd notice that}$ $$\begin{align} &\sum_{k=0}^{2n+1}(-1)^n\frac{a^k}{k!}\frac{b^{2n+1-k}}{(2n+1-k)!}=S_{\text{even}}(n)+S_{\text{odd}}(n)\text{, for each n, where }\\ &S_{\text{even}}(n):=\sum_{k=0,2,4,\dots,2n}(-1)^n\frac{a^k}{k!}\frac{b^{2n+1-k}}{(2n+1-k)!}\\ &S_{\text{odd}}(n):=\sum_{k=1,3,5,\dots,2n+1}(-1)^n\frac{a^k}{k!}\frac{b^{2n+1-k}}{(2n+1-k)!}\\ \end{align}$$ $\text{That is, we split up the summation into even terms and odd terms.}$ $_\text{Yes. It's kind of an out-of-thin-air operation and do take time to come up with.}$ $\text{Lastly, note that, by simple algebraic maneuvering, we have}$ $$\begin{align} S_{\text{even}}(n)&=\sum_{k=0}^{n}(-1)^n\frac{a^{2k}}{(2k)!}\cdot\frac{b^{2(n-k)+1}}{(2(n-k)+1)!}\\ S_{\text{odd}}(n)&=\sum_{k=0}^{n}(-1)^n\frac{a^{2k+1}}{(2k+1)!}\cdot\frac{b^{2(n-k)}}{(2(n-k))!} \end{align}$$ $\text{Hence, if compare with what we have evaluated before, the coincidence is that we can rewrite}$ $$\begin{align} \sin(a)\cos(b)&=\sum_{n=0}^{\infty}S_{\text{odd}}(n)\\ \cos(a)\sin(b)&=\sum_{n=0}^{\infty}S_{\text{even}}(n) \end{align}$$ $\text{Hence, substituting everything back in,}$ $$\begin{align} \sin(a+b)&=\sum_{n=0}^{\infty}S_{\text{even}}(n)+S_{\text{odd}}(n) & \text{(Theorem 3.47)}\\ &=\sum_{n=0}^{\infty}S_{\text{even}}(n)+\sum_{n=0}^{\infty}S_{\text{odd}}(n)\\ &=\cos(a)\sin(b)+\sin(a)\cos(b) \end{align}$$ $\text{Q.E.D.}$