# 110CP2
## Final
```c=
#include <iostream>
#include <cstdlib>
#include <utility>
#include <string>
#include <vector>
#include <queue>
using namespace std;
int Round, M, N;
char grid[20][20]={};
#define RIGHT 0
#define DOWN 1
#define UP 2
#define LEFT 3
int steps[4][2] = {
{0,1},
{1,0},
{-1,0},
{0,-1}
};
struct cell{
int dir;
int pts;
int i;
int j;
int count;
};
struct cell cache[20][20] = {};
queue<struct cell> que;
bool valid(int x, int y){
return (
x >= 0 && x < M && y >=0 && y < N &&
grid[x][y] != 'x' &&
grid[x][y] != 'A' && grid[x][y] != 'B'
);
}
int calculateScore(int currentScore, int i, int j) {
char gettingObject = grid[i][j];
switch (gettingObject) {
case 'm':
return currentScore + 1;
case 'n':
return currentScore - 1;
case 's':
return currentScore * 2;
case 't':
return currentScore / 2;
case '.':
case 'b':
default:
return currentScore;
}
}
string defaultOutput(int dir) {
switch (dir) {
case UP:
return "UP";
case DOWN:
return "DOWN";
case LEFT:
return "LEFT";
case RIGHT:
return "RIGHT";
}
return "FALSE";
}
string next_dir(int ci, int cj, int point) {
struct cell u, d, l, r;
u.i = ci + steps[2][0], u.j = cj + steps[2][1], u.dir = UP, u.count = 1;
d.i = ci + steps[1][0], d.j = cj+ steps[1][1], d.dir = DOWN, d.count = 1;
l.i = ci + steps[3][0], l.j = cj + steps[3][1], l.dir = LEFT, l.count = 1;
r.i = ci + steps[0][0], r.j = cj + steps[0][1], r.dir = RIGHT, r.count = 1;
if (valid(l.i, l.j)) {
l.pts = calculateScore(point, l.i, l.j);
que.push(l);
}
if (valid(r.i, r.j)) {
r.pts = calculateScore(point, r.i, r.j);
que.push(r);
}
if (valid(u.i, u.j)) {
u.pts = calculateScore(point, u.i, u.j);
que.push(u);
}
if (valid(d.i, d.j)) {
d.pts = calculateScore(point, d.i, d.j);
que.push(d);
}
while(!que.empty()){
struct cell deq = que.front();
que.pop();
if(cache[deq.i][deq.j].pts < deq.pts)
cache[deq.i][deq.j] = deq;
if(deq.count < 5) {
for(int i = 0; i < 4; i++){
int next_i = deq.i+steps[i][0];
int next_j = deq.j+steps[i][1];
if(valid(next_i, next_j)) {
struct cell next;
next.dir = deq.dir;
next.count = deq.count+1;
next.i = next_i;
next.j = next_j;
que.push(next);
}
}
}
}
int max = 0;
int max_dir;
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
if(cache[i][j].pts > max){
max = cache[i][j].pts;
max_dir = cache[i][j].dir;
}
}
}
return defaultOutput(max_dir);
}
// cahce[i][j] = max point can be reached within 3 steps
int main(void){
int A, B;
char me;
int ai, aj, bi, bj;
cin >> Round >> M >> N;
for(int i=0;i<M;i++)
for(int j=0;j<N;j++) {
cin >> grid[i][j];
if(grid[i][j] == 'A')
ai = i, aj = j;
else if(grid[i][j] == 'B')
bi = i, bj = j;
}
cin >> A >> B >> me;
if(me == 'A')
cout << next_dir(ai, aj, A) << endl;
else
cout << next_dir(bi, bj, B) << endl;
}
```
## Cat
#### solution1: without malloc
```c=
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int steps[4][2] = {
{0,1},
{1,0},
{0,-1},
{-1,0}
};
typedef struct cell {
int x;
int y;
int count;
} cell;
void enqueue(cell queue[1000000], cell elem, int* rear) {
queue[*rear] = elem;
(*rear)++;
}
cell dequeue(cell queue[1000000], int* front) {
(*front)++;
return queue[*front-1];
}
int bfs(char grid[100][100], int n) {
cell queue[1000000];
int front = 0, rear = 1;
cell start;
// find start point
for(int i = 0; i < n; i++)
for(int j = 0; grid[i][j] != 0; j++)
if(grid[i][j] == 'K') {
start.x = i;
start.y = j;
start.count = 0;
break;
}
queue[0] = start;
while(front != rear) {
cell deq = dequeue(queue, &front);
int x = deq.x, y = deq.y;
grid[x][y] = '#';
for(int i = 0; i < 4; i++) {
int nextX = x + steps[i][0];
int nextY = y + steps[i][1];
if(nextX >= 0 && nextX < 100 && nextY >= 0 && nextY <100) {
if(grid[nextX][nextY] == '.') {
cell next = (cell){nextX, nextY, deq.count+1};
enqueue(queue, next, &rear);
} else if (grid[nextX][nextY] == '@')
return deq.count+1;
}
}
}
return 0;
}
int main() {
int n;
while(scanf("%d", &n) && n > 0) {
char grid[100][100] = {'0'};
for(int i = 0; i < n; i++)
scanf("%s", grid[i]);
int res = bfs(grid, n);
if(res)
printf("%d\n", res);
else
printf("= =\"\n");
}
return 0;
}
```
#### solution2: with malloc
```c=
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int steps[4][2] = {
{0,1},
{1,0},
{0,-1},
{-1,0}
};
typedef struct cell {
int x;
int y;
int count;
} cell;
void enqueue(cell** queue, cell* elem, int* rear) {
queue[*rear] = elem;
(*rear)++;
}
cell* dequeue(cell** queue, int* front) {
(*front)++;
return queue[*front-1];
}
int bfs(char grid[101][101], int n) {
cell* queue[1000000];
int front = 0, rear = 1;
cell* start = (cell*)malloc(sizeof(cell));
// find start point
for(int i = 0; i < n; i++) {
for(int j = 0; grid[i][j] < 100; j++) {
if(grid[i][j] == 'K') {
start->x = i;
start->y = j;
start->count = 0;
}
}
}
queue[0] = start;
while(front != rear) {
cell* deq = dequeue(queue, &front);
int x = deq->x, y = deq->y;
grid[x][y] = '#';
for(int i = 0; i < 4; i++) {
int nextX = x + steps[i][0];
int nextY = y + steps[i][1];
if(nextX >= 0 && nextX < 100 && nextY >= 0 && nextY <100) {
if(grid[nextX][nextY] == '.') {
cell* next = (cell*)malloc(sizeof(cell));
next->x = nextX;
next->y = nextY;
next->count = deq->count+1;
enqueue(queue, next, &rear);
} else if (grid[nextX][nextY] == '@') {
int res = deq->count+1;
while(front != rear)
free(dequeue(queue, &front));
free(deq);
return res;
}
}
}
free(deq);
}
return 0;
}
int main() {
int n;
while(scanf("%d", &n) && n > 0) {
char grid[101][101] = {'#'};
for(int i = 0; i < n; i++) {
scanf("%s", grid[i]);
}
int res = bfs(grid, n);
if(res)
printf("%d\n", res);
else
printf("= =\"\n");
}
return 0;
}
```
## [LIS](https://leetcode.com/problems/longest-increasing-subsequence/)
Given an integer array nums, return the length of the longest strictly increasing subsequence.
A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].
解法一:`n^2`
建立一個dp array,`dp[i]`代表的是以`nums[i]`做為結尾的seq的最大長度,做法是搜尋 `dp[0]` ~ `dp[i-1]`,比對相對應的nums然後更新`dp[i]`。
```c
int lengthOfLIS(int* nums, int numsSize){
int dp[numsSize];
int max = 1;
for(int i = 0; i < numsSize; i++) {
dp[i] = 1;
for(int j = 0; j < i; j++)
dp[i] = (nums[i]>nums[j] && dp[i] <= dp[j]) ? dp[j]+1: dp[i];
max = dp[i]>max ? dp[i] : max;
}
return max;
}
```
解法二: `nlogn`
建立一個dp array,`dp[i]`代表的是長度i的最佳結尾,關於最佳結尾,可以思考 `1,2,3` 和 `1,2,5`誰對於這個題目來說更有未來,肯定是前者吧因為之後出現`4`後者的長度不會再增加了,前者卻可以變成`1,2,3,4`。每個新插入的數只有兩種可能
* 如果比目前`dp[-1]`(最後一個)大,可以直接串上, e.g., `1,2,3`--插入4-->`1,2,3,4`
* 如果比`dp[-1]`小,就用bs更新dp, e.g., `1,2,5`--插入4-->`1,2,4`
搜尋的部分參考[這題](https://leetcode.com/problems/search-insert-position/),上課講過。最後回傳dp長度即可
```c
int lengthOfLIS(int* nums, int numsSize){
int dp[numsSize];
int idx = 0;
for(int i = 0; i < numsSize; i++) {
if(!idx || (dp[idx-1] < nums[i])) {
dp[idx] = nums[i];
idx++;
} else {
int l = 0, r = idx-1;
while(l <= r) {
int mid = (l+r) >> 1;
if(dp[mid] >= nums[i])
r = mid-1;
else
l = mid+1;
}
dp[l] = nums[i];
}
}
return idx;
}
```
## [minimum-number-of-removals-to-make-mountain-array](https://leetcode.com/problems/minimum-number-of-removals-to-make-mountain-array/)
* 移除最少數字=計算最大長度
* 以`nums[i]`為山頂的mountain array,最大長度是LIS(`nums[:i+1]`)+LIS(`nums[i:]`)-1
```c
int minimumMountainRemovals(int* nums, int numsSize){
int nums_r[numsSize]; // copy and reverse from nums
for(int i = 0; i < numsSize; i++)
nums_r[i] = nums[numsSize-i-1];
int l2r[numsSize], r2l[numsSize];
LIS(nums, l2r, numsSize); // left to right
LIS(nums_r, r2l, numsSize);
int max = 0;
for(int i = 0; i < numsSize; i++)
if(l2r[i]>=2 && r2l[numsSize-i-1]>=2)
max = l2r[i]+r2l[numsSize-i-1]-1 > max ? l2r[i]+r2l[numsSize-i-1]-1 : max;
return numsSize-max;
}
void LIS(int* nums, int* maxLens, int numsSize){
int dp[numsSize];
int idx = 0;
for(int i = 0; i < numsSize; i++) {
if(!idx || (dp[idx-1] < nums[i])) {
dp[idx] = nums[i];
idx++;
} else {
int l = 0, r = idx-1;
while(l <= r) {
int mid = (l+r) >> 1;
if(dp[mid] >= nums[i])
r = mid-1;
else
l = mid+1;
}
dp[l] = nums[i];
}
maxLens[i] = idx;
}
}
```