--- title: 工程數學 03/15+17 --- ###### tags: `工程數學 2021` ### 03/15 Ex. $(\sin(x)\cosh(y))dx=(cos(x)sinh(y))dy=0$ → $M=\sin(x)\cosh(y)$ → $N=cos(x)sinh(y)$ $\frac{\partial M}{\partial y}$ = $\sin(x) \sinh (y)$ $\frac{\partial N}{\partial x}$ = $\sin(x) \sinh (y)$ $\frac{\partial u}{\partial x}=\sin(x)\cosh(y)$ → $u=-\cos (x) \cosh (y) + k(y)$ $\frac{\partial u}{\partial y} = -cos (x) sinh (y) + \frac{dk(y)}{dy} = N = -\cos (x) \sinh (y)$ → $\frac{dk(y)}{dy} = 0$ → $k(y) = C^*$ ![](https://i.imgur.com/czyOL7c.jpg) ![](https://i.imgur.com/X0fUqxt.jpg) ![](https://i.imgur.com/aoA5fbE.jpg) ![](https://i.imgur.com/KwR6aip.jpg) ### 03/17 #### First-Order Linear Differential Equations A 1st order DE is said to be linear if it can be writer as $y' + p(x)y = r(x)$ 1. r(x) = 0 → DE is homogeneous 2. r(x) ≠ 9 → DE is non-homogeneous 1. $y' + p(x)y = 0$ → $\frac{dy}{dx} = -p(x)y$ → $\frac{dy}{y} = -p(x)dx$ → $\ln|y| = -\int{ p dx + c^* }$ → $y = ce^{- s p dx}$ → $y = ce^{-h}$, $h = \int{ p dx }$ * A homogeneous always has a trvial solution y(x) = 0 2. $y' = p(x) y = r(x)$ → $\frac{dy}{dx} + py = r$ → $(py - r)dx + dy = 0$ ____M____ _N_ $\frac{\partial M}{\partial y} = p ≠ \frac{\partial N}{\partial x} = 0$ $\frac{1}{N} ( \frac{\partial M}{\partial y} - \frac{\partial }{\partial X}) = p(x)$ a function of r $F(x) = e^{ \int{ \frac{1}{n} (\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}) }dx }$ $= e^{\int{ pdx }}$ $e^{\int pdx}(y' + py) = e^{\int pdx}r$ → $( e^{\int pdx} y )' = e^{\int pdx}r$ → $e^{\int pdx}y = \int{( e^{\int pdx} r )dx + c}$ → $y = ce^{-\int p dx} + e^{-\int{ pdx }} \int{ e^{\int{pdx}} r dx }$ → $ce^{-h} + e^{-h} \int{ e^h dx },\ h=\int{pdx}$ * The solution of the homogeneous DE is a speied case of the solution of the non-homogeneous 另解: :+1: ![](https://i.imgur.com/RimuCOe.jpg =250x) Ex. $y'-y = e^{2x}$ $y' + py = r$ $p=-1, = e^{2x}$ $y= ce^{-h} + e^{-h} \int e^h r dx$ $h = \int{ pdx } = -x$ $e^{-h} = e^x, e^h = e^{0x}$ $y = ce^x + e^x \int{ e^{-x} e^{2x} dx }$ $= ce^x + e^{2x}$ 另解: F(x) = e^{-x} Ex. $xy' - 4y + 2x^2 + 4 = 0$ → $y' - \frac{4}{x}y = -2x-\frac{4}{x}$ $p(x) = -\frac{4}{x}, (x) = -2x-\frac{4}{x}$ $y = ce^{-h} + e^{-h} \int {e^h r dx}$ $h = \int{pdx} = -4\ln|x|$ $e^{-h} = e^{4\ln|x|} = x^4$ $e^h = x^{-4}$ $y = cx^4 + x^4 \int{ x^{-4} (2x-\frac{4}{x}) dx}$ $= cx^4 + x^4 \int{ -2x^{-3} - 4x^{-5} dx }$ $= cx^4 + x^2 + 1$ 另解: $F(x) = x^{-5}$ Certain non-linear DE can be transfered to linear 1. Bernoulli equation $y' + p(x)y = r(x) y^a$ ($a=0$ or $1$. DE is linear) Let $u = y^{1-a}$ $u' = (1-a)y^{-a} y'$ $= (1-a)y^{-a}(ry^{a}-py)$ $= (1-a)r - (1-a)pu$ → $u' + (1-a) pu = (1-a)r$ $(y' + py = r)$ linear! Ex. $xy' + y = x^2 y^2$ → $y' + x^{-1} y = x y^2$ (y' + py = ry^a) Let $u = y^{1-2} = y^{-1}$ $u' = - y^{-2}(xy^{2} - x^{-1}y)$ $= -x+x^{-1}u$ → $u' - x^{-1}u = -x$ linear $u = ce^{-h} + e^{-h} \int{e^h r dx}$ $h = \int{p dx} = \int{-x^{-1}dx} = -\ln x$ $e^{-h} = e^{\ln x} = x$, $e^h = x^{-1}$ $u = cx+x\int{x^{-1}(-x)dx}$ $= cx-x^2$ $y^{-1} = cx - x^2$ → $y = {1}\over{cx - x^{2}}$ Ex. $y' + {1}\over{x} y = 3x^2y^3$ $(y'+py = ry^a)$ Let $u = y^{1-3} = y^{-2}$ $u' = -y^{-3}(3x^2y^3- {y}\over{x} )$ $ = -x^6 + {2}\over{x}u$ → $u' - {2}\over{x}u = -6x^2$ $u = ce^{-h} + e^{-h} \int e^h r dx$ $e^{-h} = x^2$ $y = {1}\over{ \sqrt{cx^2-6x^3} }$