--- title: 工程數學 03/15+17 --- ###### tags: `工程數學 2021` ### 04/07 Nonhomogeneous Equations $y'' + py' + gy = 0 - (H)$ $h''+py' + gy = r - (N)$ Relationship between soltions of (H) & (N) a. THe difference of 2 soltions of (N) is a solution of (H) $y_1'' + py_1' + gy_1 = r$ ~(1) $y_2'' + py_2' + gy_2 = r$ ~(2) $(1) - (2)$ $(y_1 - y_2)'' + p(y_1 - y_2) + g(y_1 - y_2) = 0$ $y_1 - y_2$ is solution of (H) b. The sum of a solution of (H) and a soltions of (N) is also a soltion of (N) $y_1'' + py_1' + gy_1 = r$ — (1) $y_2'' + py_2' + gy_2 = 0$ — (1) $(1) + (2)$ $(y_1 + y_2)'' + p(y_1 + y_2) + g(y_1 + y_2) = r$ $y_1 + y_2 is a soltion of (N)$ Def. A gerneal soltion of (N) is of the form $y_N = y_H + y_p$ $y_H = c_1y_1 + c_2y_2$ is a GS of (H) $y_p$ is any soltion of (N) (Containing no arbitrary constant) Ex. $y'' + 2y' + 101y = 10.4 e^x$ 1. Solve $y'' + 2y' + 101 y = 0$ $λ^2 + 2λ + 101 = 0$ $y_H = e^{-x}( c_1 cos(10x) + c_2 sin(10x) )$ 2. Find $y_p$ Guess $y_p = ce^x$ $ce^x + 2ce^x + 101ce^x = 10.4 e^x$ $→ c = 0.1$ $y_p = 0.1e^x$ $y=e^{-x}(c_1 \cos 10x + c_2 \sin 10x) + 0.1e^x$ ![](https://i.imgur.com/Knzd18a.jpg) ![](https://i.imgur.com/YU0RqdW.jpg) ![](https://i.imgur.com/YVqmlPW.jpg) ![](https://i.imgur.com/ZW9QoYB.jpg) ![](https://i.imgur.com/ljPXrDd.jpg)