# 窮人也玩得起的local物件辨識 ###### tags: `FRC` `Object Detection` `Raspberry Pi` ## Step 1: Set up hardware(Pi 3) 1) Wires: HDMI, Micro USB, RJ45, USB 2) Camera: Pi camera is the Default Option, other cameras can be used also 3) Micro SD card: Write code after plugging it into the SD card port on the computer 4) Coral USB Accelerator: Increases the inference speed by ~10x ## Step 2: Install the TensorFlow Lite runtime ### TensorFlow Lite converter >TensorFlow model => TensorFlow Lite FlatBuffer file (.tflite) Supports SavedModel directories, tf.keras models, and concrete functions ### Pip > 讓安裝Python套件更簡單 ### 轉換方式 ```go= converter = lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() ``` ## Reference ### [tf.lite.Interpreter](https://www.tensorflow.org/lite/guide/python) ### [Tutorial](https://github.com/tensorflow/examples/blob/master/lite/examples/object_detection/raspberry_pi/README.md)