--- ###### tags: `Quantum Computing` --- # Bloch Sphere ## def - magnitude=amplitude - phase: $e^{i\theta}$ - Global Phase: any complex $\alpha, \beta$ - Relative Phase:0~1 - $|\alpha|=\cos(\theta/2)$, $|\beta|=\sin(\theta/2)$ ## phase: $e^{i\theta}$ $|\psi> =\alpha|0>+ \beta|1>$ $\because \alpha, \beta$ $\in Complex$ $\therefore$ it can be rewrited as $|\psi> =|\alpha|e^{i\theta_\alpha}|0>+ |\beta|e^{i\theta_\beta}|1>$ $|\psi> =[|\alpha||0>+ |\beta|e^{i(\theta_\beta-\theta_\alpha)}|1>]$ $e^{i\theta_\alpha}$ is **global phase** $e^{i(\theta_\beta-\theta_\alpha)}$ is **relative phase**(between 0 and 1) --- ## bloch sphere ![](https://i.imgur.com/icSDYIv.png) $|\alpha|^2+|\beta|^2=1$ $\cos^2(\theta/2)+\sin^2(\theta/2)=1$ $|\alpha|=\cos(\theta/2)$ $|\beta|=\sin(\theta/2)$ => $|\psi >=\cos(\theta/2)|0>+\sin(\theta/2)e^{i\phi} |1>$ $e^{i\pi}=-1, \because \cos\theta=-1δΈ”\sin\theta=0$