# Limit Trigonometri ###### tags: `math` `calculus` `limits` `trigonometry` ## ★ Bentuk-bentuk Dasar ### ★ Hasil Tes Limit $$ \frac{0}{\text{positif}}=\frac{0}{\text{negatif}}=0 $$ $$ \frac{\text{positif}}{0} = \infty $$ $$ \frac{\text{negatif}}{0} = -\infty $$ ### ★ *Seven Deadly Sins* Semua bentuk di bawah ini tidak terdefinisi: $$ \begin{aligned} 1 &.\; \frac{0}{0} \\ 2 &.\; \frac{\infty}{\infty} \\ 3 &.\; 0 \times \infty \\ 4 &.\; \infty - \infty \\ 5 &.\; 0^0 \\ 6 &.\; 1^\infty \\ 7 &.\; \infty^0 \end{aligned} $$ ### ★ Limit Trigonometri Dasar $$ \lim_{x\to0} \begin{Bmatrix} \frac{ax}{bx} & \frac{\sin ax}{bx} & \frac{\tan ax}{bx} \\ \frac{ax}{\sin bx} & \frac{\sin ax}{\sin bx} & \frac{\tan ax}{\sin bx} \\ \frac{ax}{\tan bx} & \frac{\sin ax}{\tan bx} & \frac{\tan ax}{\tan bx} \end{Bmatrix} = \frac{a}{b} $$ ## ★★ Dalil L'Hôpital :::warning **Dalil L'Hôpital** Jika $f(a) / g(a)=0/0$, maka $$ \lim_{x\to a}\frac{f(x)}{g(x)}= \lim_{x\to a}\frac{f'(x)}{g'(x)} $$ dengan $f'(x)$ dan $g'(x)$ adalah turunan pertama dari $f(x)$ dan $g(x)$. ::: | $\mathbf{\boldsymbol{f}(\boldsymbol{x})}$ | $\mathbf{\boldsymbol{f}'(\boldsymbol{x})}$ | |:--------------------- | ---------------------------------------- | | konstanta | $0$ | | $a\cdot g(x)$ | $a \cdot g'(x)$ | | $ax^n$ | $anx^{n-1}$ | | $f(x)\cdot g(x)$ | $f'(x)\cdot g(x)+f(x)\cdot g'(x)$ | | $$\frac{f(x)}{g(x)}$$ | $$\frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$ | | $f(g(x))$ | $g'(x) \cdot f'(g(x))$ | | $\sin x$ | $\cos x$ | | $\cos x$ | $-\sin x$ | | $\tan x$ | $\sec^2 x$ | **Kapan menggunakan dalil ini?** - Bentuk $\text{polinom}/\text{polinom}$ - Bentuk $\cos ax$ ## WIP :::spoiler $$ {1. \;} \lim_{x \to 5} \frac{\sin(3x-15^\circ)}{\tan(2x-10^\circ)} = \lim_{x \to 5} \frac{\sin(3(x-5^\circ))}{\tan(2(x-5^\circ))} =\frac{3}{2} $$ $$ \begin{aligned} {4. \;} \lim_{x \to 0} \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x} &= \lim_{x \to 0} \left[ \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x} \cdot \frac{\sqrt{1+\sin x}-\sqrt{1+\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right] \\ &=\lim_{x \to 0} \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x} \end{aligned} $$ :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up