# Derivatives ###### tags: `math` ## Algebraic Functions **Note:** $a$, $c$, and $n$ are constants; $u$ and $v$ are functions of $x$. $$ \begin{aligned} \frac{\text{d}}{\text{d}x}(c) &= 0 \\ \frac{\text{d}}{\text{d}x}(x) &= 1 \\ \frac{\text{d}}{\text{d}x}(x^n) &= nx^{n-1} \\ \\ \frac{\text{d}}{\text{d}x}(au) &= au'\\ \frac{\text{d}}{\text{d}x}(u \pm v) &= u' \pm v' \\ \frac{\text{d}}{\text{d}x}(u \cdot v) &= u'v+uv' \\ \frac{\text{d}}{\text{d}x}\left(\frac{u}{v}\right) &= \frac{u'v-uv'}{v^2} \\ \end{aligned} $$ ## Trigonometric Functions $$ \begin{aligned} \frac{\text{d}}{\text{d}x}(\sin x) &= \cos x \\ \frac{\text{d}}{\text{d}x}(\cos x) &= -\sin x \\ \frac{\text{d}}{\text{d}x}(\tan x) &= \sec^2 x \\ \\ \frac{\text{d}}{\text{d}x}(\csc x) &= -\csc x \cot x\\ \frac{\text{d}}{\text{d}x}(\sec x) &= \sec x \tan x\\ \frac{\text{d}}{\text{d}x}(\cot x) &= -\csc^2 x\\ \end{aligned} $$ ## Derivative Applications ### Tangent Lines (Garis Singgung) #### Slope of tangent line (gradien garis singgung) The slope of a line tangent to $f(x)$ at $x = a$ is $$ m = f'(a). $$ #### Relation between two lines Let there be 2 lines with slopes $m_1$ and $m_2$. The relation between these two lines is $$ \begin{aligned} \mathbf{Parallel} \text{ (sejajar): }& m_1 = m_2 \\ \mathbf{Perpendicular} \text{ (tegak lurus): }& m_1 \cdot m_2 = 1 \text{ or } m_2 = -\frac{1}{m_1} \end{aligned} $$ #### Equation of a line - If you know the gradient of a line, say $m$, and the line passes through point $(0, c)$ on the $y$-axis: $$ y = mx + c $$ - If you know the gradient of a line, say $m$, and a point the line passes through, say $(x_1, y_1)$: $$ y - y_1 = m (x - x_1) $$ - If you know two points the line passes through, say $(x_1, y_1)$ and $(x_2, y_2)$: $$ \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} $$ ### Increasing and Decreasing, Stationary Points Let $f(x)$ be a function of $x$. - The function is **increasing** (naik) in the interval where $$ f'(x) > 0 $$ - The function is **decreasing** (turun) in the interval where $$ f'(x) < 0 $$ - The function has a **stationary point** (titik stasioner) in the interval where $$ f'(x) = 0 $$ - The function is **non-increasing** (tidak pernah naik) in the interval where $$ f'(x) \leq 0 $$ - The function is **non-decreasing** (tidak pernah turun) in the interval where $$ f'(x) \geq 0 $$