# CS2100 Assignment 2 Name : Ethan Chen Ee Shuen Tutorial Group : T11 2a) Jump 2b) ``` 1) 0010 2) 0001 0000 0001 0000 0000 0000 0000 3) 0010 0001 0000 0001 0000 0000 0000 ``` 3a) (View Next page if this page doesn't load) ``` A·B' + A'·C + B·C'·D A B C D X 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 a b c d X 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 F(A,B,C,D) = A·B' + A'·C + B·C'·D Let the negation of F to be G Then, G(A, B, C, D) = (A·B' + A'·C + B·C'·D)' = (A' + B)·(A + C')·(B' + C + D') //De Morgan's Theorem and Involution = ((A' + B)·A +(A' + B)·C')·(B' + C + D') //Distribution Law = ((A'·A + B·A) +(A'·C' + B·C'))·(B' + C + D') //Distribution Law = ((0 + B·A) + (A'·C' + B·C'))·(B' + C + D') //Inverse Law = (B·A +A'·C' + B·C')·(B' + C + D') //Identity & Distribution Law = (B·A +A'·C' + B·C')· B' + (B·A +A'·C' + B·C')·C + (B·A +A'·C' + B·C')·D' //Distribution Law = (B·A·B' + A'·C'·B' + B·C'·B') + (B·A·C + A'·C'·C + B·C'·C) + (B·A·D' + A'·C'·D' + B·C'·D') //Distribution Law = (0 + A'·C'·B' + 0) + (B·A·C + 0 + 0) + (B·A·D' + A'·C'·D' + B·C'·D') //Inverse Law = A'·C'·B' + B·A·C + B·A·D' + A'·C'·D' + B·C'·D' //Identity Law F(A,B,C,D) = (A'·C'·B' + B·A·C + B·A·D' + A'·C'·D' + B·C'·D')' = (A'·C'·B')'·(B·A·C)'·(B·A·D')'·(A'·C'·D')'·(B·C'·D')' //De Morgan's Theorem = (A+C+B)·(B'+A'+C')·(B'+A'+D)·(A+C+D)·(B'+C+D) //De Morgan's Theorem and Involution = (A+C+B)·(B'+C+D)·(B'+A'+C')·(B'+A'+D)·(A+C+D) //Commutative = (A+C+B)·(B'+C+D)·(A+C+D)·(B'+A'+C')·(B'+A'+D) //Commutative = (A+C+B)·(B'+C+D)·(B'+A'+C')·(B'+A'+D) //Consensus = (A+C+B).(B'+(A'+C').(C+D).(A'+D)) //Distribution law = (A+C+B).(B'+(A'+C').(C+D)) //Consensus = (A+C+B).(B'+A'+C').(B'+C+D) //Distribution law ```