# 專題實驗記錄 Recoder : 蘇鈺琁 204/02/22 --- - [簡報](https://docs.google.com/presentation/d/16r33PXiUrVem_XuhlraLCHa7l-kraC43/edit?usp=sharing&ouid=107829962859666644459&rtpof=true&sd=true) - 使用以下三種方法改進model input 1.找出與title相關句子依序生成五個句子作為model input 2.一次生成五個 3.從evidence找出相關句子 透過相似度找出最合適的輸出claim 數量:418筆 - Discussion - To-do 2024/01/31 --- - 生成結果 - input = title - 相較完整、但有些姓氏缺漏(筆畫複雜) ```python= '<unk> 瑞疫苗在美國,從美國進口到台灣的國' ``` <!-- ```python= --> '高端疫苗、疫苗等弊案共40件,前福部長***時中***、***食署***長***秀梅***都列為被告?' '消防員撞清德總部,NCC應定電視不乍播?!?!' "網傳***蔡英文***視導空軍部隊時,還跟部隊通話時被解放軍台?" "「***國瑜***將市長和總統選的補助款全部捐出,共15000萬元?」" "國民黨主席***王金*平**近日出书,要求國民黨下台、國民黨總統參選人向全民道歉。不过,國民黨統***馬英九***卻说,五是沒用書的圖片。" <!-- ``` --> - 不能爬到全部文章內容 - 只能爬到page 41以下,全部48 - https://tfc-taiwan.org.tw/taxonomy/term/473?page=3 - 數量 418 ```python= Failed to establish a new connection: [WinError 10060] 連線嘗試失敗,因為連線對象有一段時 間並未正確回應,或是連線建立失敗,因為連線的主機無法回應。 ``` - Discussion - 方法 - model input: - 1.找出與title相關句子依序生成五個句子作為model input - 2.一次生成五個 - 生成數量調整: - 3.claim屬於第五個句子 - 4.不使用title改用evidence找出相關句子 - 報告調整 - 做簡報程述:先前情提要連結過去到目前的進度、實作動機 - 模型測試 - 使用validation 和test data測試效能 - To-do - [x] 使用討論方法 - [x] 報告呈現調整 2024/01/22 --- - 生成結果 ```python= '<unk> 瑞疫苗在美國,從美國進口到台灣的國' ``` - 驗證loss沒有下降 - ![image](https://hackmd.io/_uploads/r1fQRjcYT.png) - 參數 - batch size = 8 - lr = 1e-4 - 模型 : Langboat/mengzi-t5-base - template ```python= text='{"soft":"我想要產生"} {"placeholder":"text_a", "shortenable":"True"} {"soft":"的相關資訊,我應該要搜尋"} {"special": "<eos>"} {"mask"}', text='{"soft":"我想要產生有關"} {"placeholder":"text_a", "shortenable":"True"} {"soft":"的呈述,此呈述為"} {"special": "<eos>"} {"mask"}' ``` - 使用其他模型和tokenizer ```python= from openprompt.plms import load_plm model_name = Langboat/mengzi-t5-base model, tokenizer = load_plm(model_name) ``` ```python= 1. 換模型 model_name = uer/t5-v1_1-base-chinese-cluecorpussmall model_class = get_model_class(plm_type = model_name) File "/usr/local/lib/python3.8/site-packages/openprompt/plms/__init__.py", line 76, in get_model_class return _MODEL_CLASSES[plm_type] KeyError: 'uer/t5-v1_1-base-chinese-cluecorpussmall' ``` ```python= 2. 使用其他套件 from transformers import BertTokenizer, MT5ForConditionalGeneration tokenizer = BertTokenizer.from_pretrained("uer/t5-v1_1-base-chinese-cluecorpussmall") model = MT5ForConditionalGeneration.from_pretrained("uer/t5-v1_1-base-chinese-cluecorpussmall") ``` - server 記憶體 ```python= torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 10.90 GiB total capacity; 2.93 GiB already allocated; 7.88 MiB free; 3.16 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF ``` - To-do - [ ] 修改模型架構 : T5 PEGASUS、T0 2024/01/16 --- - claim 人工標記 - server執行以下資料處理時,出現解析錯誤 ```python= train = 'data_train.json' validaion = 'data_dev.json' test = 'data_test.json' datasets = DatasetDict.from_json({'train':train, 'validation':validaion, 'test':test}) ``` ```python= Traceback (most recent call last): File "/usr/local/lib/python3.8/site-packages/datasets/packaged_modules/json/json.py", line 121, in _generate_tables pa_table = paj.read_json( File "pyarrow/_json.pyx", line 290, in pyarrow._json.read_json File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: JSON parse error: Missing a closing quotation mark in string. in row 5 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.8/site-packages/datasets/builder.py", line 1925, in _prepare_split_single for _, table in generator: File "/usr/local/lib/python3.8/site-packages/datasets/packaged_modules/json/json.py", line 144, in _generate_tables dataset = json.load(f) File "/usr/local/lib/python3.8/json/__init__.py", line 293, in load return loads(fp.read(), File "/usr/local/lib/python3.8/codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe6 in position 82640895: unexpected end of data The above exception was the direct cause of the following exception: Traceback (most recent call last): File "main.py", line 8, in <module> datasets = DatasetDict.from_json({'train':train, 'validation':validaion, 'test':test}) File "/usr/local/lib/python3.8/site-packages/datasets/dataset_dict.py", line 1450, in from_json return JsonDatasetReader( File "/usr/local/lib/python3.8/site-packages/datasets/io/json.py", line 59, in read self.builder.download_and_prepare( File "/usr/local/lib/python3.8/site-packages/datasets/builder.py", line 954, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.8/site-packages/datasets/builder.py", line 1049, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/usr/local/lib/python3.8/site-packages/datasets/builder.py", line 1813, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/usr/local/lib/python3.8/site-packages/datasets/builder.py", line 1958, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset ``` <!-- - 生成 ```python= _, output_sentence = self.model.generate(batch, **generation_arguments) ``` - AttributeError: 'PromptForGeneration' object has no attribute 'can_generate' - 更換版本transformer 4.19.0 --> 2024/01/09 --- - paper_related work - 篇幅 - 文章檢索 - claim 人工標記 - preprocess - evidence : gold evidence(1~4) & evidence(4) - tgt_text: 放claim - dataset: - "evidence": [["Margot_Kidder", "15", "In 2005 , Kidder became a naturalized U.S. citizen ."]] ```python = temp_label = set() for evidences in data['evidence']: for evidence in evidences: temp_label.add(evidence[2]) input_example = InputExample(text_a = data['claim'], tgt_text=" [SEP] ".join(temp_label)) ``` - meta: 存多筆evidence - To-do - [ ] paper 修改 - [ ] document retrieval - [x] 訓練模型: tgt_text=claim - [ ] title - [x] meta: evidence (https://github.com/thunlp/OpenPrompt/blob/main/tutorial/6.1_chinese_dataset_uer_t5.py) 2024/01/02 --- - paper_related work - sentenceBERT part - claim 人工標記 - method - To-do - [x] 人工標記:T5、generation - [ ] paper modification: 問題->方法、模型 12/26 --- - paper_related work - sentenceBERT - Prompt-based learning - PEFT - claim verification - documnt retrieval - evidence retrieval - Problem - 段落(分段) - 內容量 - 中文-英文 - To-do - [ ] 翻譯 - [x] cite - [ ] p-tuning & PEFT 做了什麼貢獻,跟我們有甚麼相關 12/12 --- - datasets - "title": "【部分錯誤】網傳圖卡「桃園北景雲計畫獲得建築金石獎『優良建築施工品質類』獎項」?", "source": "", "publish_date": "2022-10-05", "domain": "部分錯誤", "claimWeb": "台湾事实查核中心", "category": "事實查核報告", "url": "https://tfc-taiwan.org.tw/articles/8249", "editor": "", "gold evidence": "['社群平台、通訊軟體自2022年9月27日開始流傳一張圖卡,內容為27屆「中華建築金石獎」得獎名單..... - claim: 人工標記 REACT - evidence? - 找出查核文章的摘要 - paper - [link](https://www.overleaf.com/project/64f1a961d9218f7d0cbfef6b) - retrieval - [link](https://docs.google.com/presentation/d/1VYD2poCowLBqV8xBw0Joe332gVlLx-qjTiMgnRkmFAw/edit#slide=id.g23f22e2422a_0_141) - To-do - [ ] 前後端架構圖 - [ ] paper: related work - [ ] 人工標記query 11/28 --- - 爬資料 - 無法爬到部分資料 - 必須爬完整篇內容 - 做分類器 - 模型表現過好 - 標籤詞給錯 - 重新訓練 - 設備使用問題 11/20 --- - 爬問題版中網友提問問題 - 根據問題爬文 - 數量不規律 - 根據內容爬文 - 網頁不像問題可以透過規律爬每篇內容 - To-do - [ 爬事實查核中心近兩年的資料 ](https://tfc-taiwan.org.tw/taxonomy/term/473) - 做分類器 11/14 --- - [related work](https://www.overleaf.com/project/64f1a961d9218f7d0cbfef6b) - claim verification - 中文 query generation(datasets) - dataset 從問答系統標記 - multi-keyword retrival - To-do - 爬問題版中網友提問問題 相關技術 方法 10/31 --- - Google translate API - demo 影片 - 這周 - 報告練習 - 論文 - document retrieval - sentence retrieval - verification - query generation(frontend)Web 10/24 --- - Google translate API - IDE可以執行翻譯,但套用到瀏覽器無法識別 - 瀏覽器不支援新版本套件require() - ES6 modules in your browser - 修改語法:使用import - 在HTML新增<script type="module" > import {require} from 'background.js'; - web browsers cannot resolve bare imports by themselves. - import translate from '../node_modules/@google-cloud/translate'; - An unknown error occurred when fetching the script. - 翻譯後的文字改變url - 後端再進行翻譯 - To-do - pythonAPI給後端 - demo影片 10/17 --- - related work撰寫 - document retrieval - sentence retrieval - query generation - claim verification - 問題-參考文章的範圍:要撰寫參考多少文章 - FastAPI - completion - google中英文翻譯 - wiki or google API選擇 - To do - [ ] Wiki API button - [ ] google translate 10/2 --- - 競賽簡報討論 9/26 --- - 實作調整 - 調整template問法 - template_text = '{"placeholder":"text_a"} {"soft":"according to the above content, the following description:"} {"placeholder":"text_b"} {"soft":"To access the outcome of claims and evidence as SUPPORTS, REFUTES, or NOT ENOUGH INFO?"} {"mask"}' - label_words={0: ["SUPPORTS"], 1: ["REFUTES"], 2: ["NOT ENOUGH INFO"] - 針對不同資料集在PromptDataLoader的batch_size給予不同參數值 - 增加early_stop - 實作結果 | BERT-base | Recall | Precision | Micro F1 | Macro F1 | | ------------------- | ------ |:---------:| -------- | -------- | | Fine-Tune | 81.18% | 80.34% | 80.27% | 80.31% | | Hard Prompt | 85.58% | 85.62% | 85.10% | 85.18% | | P-Tuning v1 | 81.85% | 71.62% | 81.47% | 81.36% | | P-Tuning v2(freeze) | 79.45% | 78.77% | 74.34% | 74.38% | | P-Tuning v1(freeze) | 75.85% | 75.03% | 78.66% | 78.65% | 9/19 --- - 實作v1(full) - max_length=128、batch_size=4、lr=5e-6 - Epoch 0, train_loss 0.9160319384500784 Epoch 0, valid_loss 0.9868071081722716 Epoch 0, valid f1 0.5189193461841252 Epoch 1, train_loss 0.8493666888424999 Epoch 1, valid_loss 0.918308158982994 Epoch 1, valid f1 0.5797136205129115 Epoch 2, train_loss 0.8335107564677446 Epoch 2, valid_loss 0.9729073854288588 Epoch 2, valid f1 0.5598199555673559 Epoch 3, train_loss 0.8247267499684228 Epoch 3, valid_loss 1.0184914831611622 Epoch 3, valid f1 0.5507444379556854 Epoch 4, train_loss 0.8189314238966166 Epoch 4, valid_loss 1.0359398625486242 Epoch 4, valid f1 0.5457238666726648 Epoch 5, train_loss 0.8148611394570011 Epoch 5, valid_loss 0.999382639446868 Epoch 5, valid f1 0.5602789179686796 Epoch 6, train_loss 0.8102320843921436 Epoch 6, valid_loss 1.0427383227427172 Epoch 6, valid f1 0.5496713413369875 Epoch 7, train_loss 0.8093603813985177 Epoch 7, valid_loss 1.0706756948502771 Epoch 7, valid f1 0.5463009922597993 Precision (micro): 55.72% Recall (micro): 55.72% F1 (micro): 55.72% Precision (macro): 58.69% Recall (macro): 55.42% F1 (macro): 55.79% - 調整 - 資料集格式 - template建構:發現claim和evidence放同樣的sentence - template_text = '{"placeholder":"text_b"} {"soft":"according to the above content, the following description:"} {"placeholder":"text_a"} {"soft":"what is the relation?"} {"mask"}' - Epoch 0, train_loss 0.8669554500385469 Epoch 0, valid_loss 0.936854774981408 Epoch 0, valid f1 0.6036477151100477 Epoch 1, train_loss 0.7679899839898798 Epoch 1, valid_loss 0.9043158296625182 Epoch 1, valid f1 0.6488751880100962 Epoch 2, train_loss 0.7352776492373218 Epoch 2, valid_loss 0.8486452470738095 Epoch 2, valid f1 0.6849687774682977 Epoch 3, train_loss 0.7180054512100116 Epoch 3, valid_loss 0.9267781534755016 Epoch 3, valid f1 0.681125223880603 Epoch 4, train_loss 0.7070338488409819 Epoch 4, valid_loss 0.9273080223714035 Epoch 4, valid f1 0.6956933198259877 Epoch 5, train_loss 0.6981460807688539 Epoch 5, valid_loss 1.0149452810545696 Epoch 5, valid f1 0.6877563660829588 Epoch 6, train_loss 0.6946998982536632 Epoch 6, valid_loss 0.9460171354394808 Epoch 6, valid f1 0.6981018571474289 Epoch 7, train_loss 0.6888278553751555 Epoch 7, valid_loss 0.9543328048022381 Epoch 7, valid f1 0.6977340308943255 Precision (micro): 68.31% Recall (micro): 68.31% F1 (micro): 68.31% Precision (macro): 70.06% Recall (macro): 69.19% F1 (macro): 68.17% - 資料格式 - ![](https://hackmd.io/_uploads/BJ51thUka.png) - ![](https://hackmd.io/_uploads/rJpnkpUk6.jpg) - paper - 新增訓練參數量和時間 - v2: trainable params: 373,254 | all params: 108,683,526 || trainable%: 0.3434319935479458 - v1:trainable params: 1,784,070 | all params: 110,094,342 || trainable%: 1.6204919958556998 - ![](https://hackmd.io/_uploads/HyT6a_LJp.png) 9/12 --- - 實作v1(full) - ![](https://hackmd.io/_uploads/H1yoUz5C2.png) - 調整: - 新增 eps=1e-8 - batch_size = 8->4 - max_seq_length = 128->512 - paper [link](https://www.overleaf.com/project/64f730c637ecc799e0527905) - [x] 添加到範本 - [ ] 表格 - [ ] 圖片 - [ ] 文字修飾 9/8 --- - p-tuning v1效能提升 - num_epochs = 8 lr = 3e-4 batch_size = 4 - 參數凍結 - ![](https://hackmd.io/_uploads/HyCkPgO03.png) - ![](https://hackmd.io/_uploads/SkfzPgOR3.png) - 程式編寫 - ![](https://hackmd.io/_uploads/By6mPluR2.png) 9/5 --- - prompt-based learning彙整[link](https://www.overleaf.com/read/mzsrtwqjpbcs) - To-do - 寫paper - deadline 9/19 - To-do - output模型預測結果 - template改善 - 資料集處理 8/31 --- - 伺服器使用 - image:python版本能夠安裝openprompt等library - container - -v路徑設定:能執行存在本機的資料夾 - 只能在設定batchsize=1才可以訓練 - 只使用到部分容量![](https://hackmd.io/_uploads/rk4bpR262.png) - import torch, gc gc.collect() torch.cuda.empty_cache() - with torch.no_grad() 8/24 --- - 使用實驗室的設備[教學](https://hackmd.io/9mUz_n1jTje2pZ2QDvTacQ) - 中央VPN連線[連結](https://ncu.edu.tw/VPN/info) - Remote-SSH使用 - 之後開啟遠端總管,並新增遠端 - 安裝SSH client [link](https://learn.microsoft.com/zh-tw/windows-server/administration/openssh/openssh_install_firstuse) - Ducker [教學](https://www.runoob.com/docker/docker-container-usage.html) 8/22 --- - progress [slide](https://docs.google.com/presentation/d/1L_ZBTb_MsJ6UBQtHoI-mF7U7nxzvMvus/edit?usp=drive_web&ouid=103103346235533747462&rtpof=true) - Discussion - p-tuning v2 - Precision (macro): 56.53% Recall (macro): 47.19% F1 (macro): 39.45% - GPU - AttributeError: module ‘torch’ has no attribute ‘frombuffer’ - arr = torch.frombuffer(v[“data”], dtype=dtype).reshape(v[“shape”]) - 法一:更新版本->導致無法使用GPU - 法二:更改語法方法 - 安裝最新的pytorch版本:pip3 install torch torchvision torchaudio --index-urlhttps://download.pytorch.org/whl/cu117 - 目前有成功裝起GPU - torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB (GPU 0; 2.00 GiB total capacity; 1.01 GiB already allocated; 41.91 MiB free; 1.12 GiB reserved in total by PyTorch) - 電腦記憶體不夠支援 - 降低batch_size - 使用實驗室的設備 - To-do - 解決torch.cuda.OutOfMemoryError: CUDA out of memory - 重新訓練模型獲得更好的效能數據 8/17 --- - hard prompt - learning rate:1e-4->1e-5 - ![](https://hackmd.io/_uploads/SJEAzBo2h.png) - ![](https://hackmd.io/_uploads/Hy5zXrs23.png) - Accuracy: 85.10% Precision: 85.62% Recall: 85.58% F1 Score: 85.14% - p-tuning v1 - 看影片整理時間軸哪裡是需要的 - 程式碼哪裡是p-tuning v1 - 找出能改善的地方 - 解決map tokenizer - ![](https://hackmd.io/_uploads/HyeN9Bo33.png) - 重新處理datasets - 參考學姊process的function將原始資料改成符合map格式的樣子 [程式碼](https://github.com/MichelleHS777/PEFT-Chinese-Fact-Verification/blob/main/preprocess.py) - 先個別將資料預處理 - 再分別將三個資料集打包成一個datasets![](https://hackmd.io/_uploads/SJoOcBs2h.png) - 參數 - lr_scheduler - 學習率調整[說明](https://towardsdatascience.com/a-visual-guide-to-learning-rate-schedulers-in-pytorch-24bbb262c863) - checkpoint - 加載之前保存的模型參數能在測試數據上評估 - torch.load:加載模型參數的字典使模型具有之前訓練得到的參數 - state_dict:將之前訓練好的模型參數用到模型中 - Precision (macro): 68.88% Recall (macro): 63.23% F1 (macro): 61.09% - 問題 - 重新使用GPU執行 - 開新帳號 - pycharm安裝GPU - [CUDA&CUDAnn](https://www.qingtianseo.com/detail/949.html) - 查看torch官網後發現沒有cuda11.2版本對應的torch下載。 考慮到版本向下兼容,可能不一定非要下載cuda=11.2對應的那個版本的torch。所以選擇下載cuda11.1的版本 - [pytorch安裝](https://blog.csdn.net/wangmengmeng99/article/details/128318248?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-128318248-blog-124355474.235%5Ev38%5Epc_relevant_anti_t3&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-128318248-blog-124355474.235%5Ev38%5Epc_relevant_anti_t3&utm_relevant_index=1) - GPU限制:hard prompt - systemRAM:p-tuning v1 - Kaggle - To-do - p-tuning v1效能提升 - pytorch安裝 - p-tuning v2模型訓練 8/10 --- - progress - [slide](https://docs.google.com/presentation/d/1j4BzenQif5Q6lvY91YgPwduhn24Z_giu/edit?usp=sharing&ouid=103103346235533747462&rtpof=true&sd=true) - Discussion - loss降不下去的可能[原因](https://juejin.cn/s/loss%E5%80%BC%E4%B8%8D%E4%B8%8B%E9%99%8D) - gradient關係 - learning rate數值大小關係 - 參考程式碼[影片](https://drive.google.com/file/d/1aZio3HdogqEvtc-AipAyDE4L4WQmNvA8/view) - To-do - 效能改善 - 能訓練出v1模型 8/8 --- - progress - [slide](https://docs.google.com/presentation/d/1j4BzenQif5Q6lvY91YgPwduhn24Z_giu/edit?usp=sharing&ouid=103103346235533747462&rtpof=true&sd=true) - Discussion - hard prompt效能 - Accuracy: 0.29266163725918076 Precision: 0.09755387908639358 Recall: 0.3333333333333333 F1 Score: 0.15093490249039374 - P-tuning v1 - load dataset方法:使用API加入網址和版本載入資料集 - metric - 用來訓練模型的評估指標 - 無法使用實作的資料集載入 - 必須自定義=>後續再做 - map - 讓資料集能完成對應的function - function是用來做分詞的 - 修改範例的分詞句子:sentence->claim & evidence - label:字串->數字 - 問題 - 資料型別問題:evidence想只用陣列裡的第三個字串元素 - 分詞長度不一致:多個claims對應第一個claim的eidence的第三個元素 - 範例語法:沒有padding設定和最大斷句長度 - parameters - 執行時出現套件安裝的提示: - 不知道安裝的原因 - 安裝後卻仍然出現 - 執行範例碼卻沒有出現 - To-do - 效能改善 - 能訓練出v1模型 7/25 --- - progress - [slide](https://docs.google.com/presentation/d/1Bhq41e3tVHeXusLa9jSKFMWfZiUrwBtL/edit?usp=drive_web&ouid=103103346235533747462&rtpof=true) - Discussion - 實作問題 - 新的實作環境 - 速度太慢 - CPU->GPU - GPU安裝 - 記憶體不足->當機 - To-do - GPU安裝 - 記憶體問題->訓練資料轉移到GPU - 改回colab 7/12 --- - Discussion - dataset有同claim不同label - 學習方法 - 小型程式+擴充套件 - Prompt+Rola??? - 態度 - 詳細解釋讓別人懂 - 獨特貢獻 - 完整>創新 7/11 --- - progress - [slide](https://docs.google.com/presentation/d/1NDVn4LPbsbueE0j02pa5-xhTDM8jJ1po/edit?usp=drive_web&ouid=103103346235533747462&rtpof=true) - Discussion - 實作說明 - Hard prompt - P-tuning v1 - PromptEncoder - To-do - P-tuning v2 - Prefix prompt - 評估效能指標設計 6/27 --- - progress - [slide](https://docs.google.com/presentation/d/1HYLzHqYIKnZKkcWcu7aOZ-GmOEgzuSgx/edit?usp=drive_link&ouid=103103346235533747462&rtpof=true&sd=true) - Discussion - 介紹資料集FEVER - 介紹hard prompt、soft prompt(P-tuning、Prefix tuning) - [V2實作](https://blog.csdn.net/as949179700/article/details/130900814) - To-do - 資料集取得、模型tuning 6/6 --- - Progress - [slide](https://docs.google.com/presentation/d/1fpb1DCZpO8iOyLdguuE5r5Y8tV6ucEQZ/edit?usp=drive_link&ouid=103103346235533747462&rtpof=true&sd=true) - Discussion - 介紹任務 - 說明模型調整的新方法P-tuning - To-do - Dataset : [FEVER](https://aclanthology.org/N18-1074/) - Model : [P-tuning]() 5/23 --- - Disscussion - 報告方式 - 流程細項說明 - 範例解釋專有名詞 - Claim Verification of Fact Checking - To-do - [X-FACT:A New Benchmark Dataset for Multilingual Fact Checking](https://aclanthology.org/2021.acl-short.86.pdf) - Implementation 4/18 --- - process - [slide](https://docs.google.com/presentation/d/1ZltWpbwZCcjNSzYRWCZDngIOCL0j2nGV/edit#slide=id.p1) - Discussion - 專題展報告與簡報呈現建議 - Datadescription(reference) - Multi-label在資料上的比例 - 細節(怎麼實作、模型架構呈現方式) - 視覺化的呈現比較 - 影片表達方式(注視、講優點 - 動機 - 改善過程學習到甚麼 - To-do - 海報 - 簡報修改 - 改善模型提升效能 3/21 --- - process - [slide](https://docs.google.com/presentation/d/1YJbOBFONagMjS84SXZVjoPIjrQ_AkNfS/edit#slide=id.p10) - Disscussion - 透過學姊如何使用API來實作 - 針對目前需求不需要建立sever使用API(這部分是長期使用下確保穩定性才這樣做)但目前只是短暫使用不需要這麼深入使用 - 建議使用Openai 的API透過對話生成label_word - To-do - 使用Openai API生成label_word - 修改模型格式 - 建立模型 - 設定使用參數 3/14 --- - process - [slide](https://docs.google.com/presentation/d/1PX5VZpAU56T9SIilCJyhirCpE99kx0f6/edit?usp=share_link&ouid=103103346235533747462&rtpof=true&sd=true) - Disscussion - 介紹KBs - 實作KBs產生的問題 - API - To-do - 修改KBs產生label word - 調整label word符合模型格式 2/21 --- - process - [slide](https://docs.google.com/presentation/d/14dyHaW5SCITAglGERQOb4_7A9DqcT0Wd/edit?usp=share_link&ouid=103103346235533747462&rtpof=true&sd=true) - Disscussion - 介紹KPT(knowledgeable prompt-tuning)如何使用在prompt based learning - label word藉由KBs外部添加產生 - To-do - 實作KPT - 了解KBs如何生成label word 1/17 --- - process - [slide](https://docs.google.com/presentation/d/1uj0kzs3-77QW0V9nVbds53kRFmgo0yCW/edit?usp=share_link&ouid=103103346235533747462&rtpof=true&sd=true) - Disscussion - 使用kklab dataset實作問題 - To-do - 使用Knowledge Verbalizer外部添加label word 12/27 --- - process - [slide](https://docs.google.com/presentation/d/1K34QF32ljJUYCjPfx6m_nUYUEohSl1F0/edit?usp=share_link&ouid=103103346235533747462&rtpof=true&sd=true) - Disscussion - 介紹prompt-based learning - To-do - prompt-based learning 實作 12/13 --- - process - [slide](https://docs.google.com/presentation/d/1Oc-f5AIa0Za9RT13ZQ9QSR7ne47xAMzE/edit?usp=share_link&ouid=103103346235533747462&rtpof=true&sd=true) - Disscussion - 競賽進度資料前處理的部分 - To-do - prompt-based learning基本了解、建立競賽模型 11/29 --- - progress - [slide](https://docs.google.com/presentation/d/1aG3L8WkSU7VYeZGxLpq_vsNNzY2NZeo6/edit?usp=share_link&ouid=103103346235533747462&rtpof=true&sd=true) - Disscussion - 針對資料集介紹span-level model相關資訊 - To-do - 使用span-level model 處理資料集 - 進度加快 - Paper link - [TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking](https://arxiv.org/pdf/2010.13415.pdf) - [Span-Level Model for Relation Extraction](https://aclanthology.org/P19-1525.pdf?fbclid=IwAR3dpK2SiybmCEEtodvdHL82srfts__yvr2LFLCmitRW7JYYUfPu5ptvEm8) 11/01 --- - progress - [Slide](https://docs.google.com/presentation/d/11t8IjwsXBrekMXK34tfoLSJFdV_j2pFK/edit?usp=share_link&ouid=103103346235533747462&rtpof=true&sd=true) - Disscussion - 論文內容問題 - To-do - 將模型結合競賽dataset - Materia - [競賽資訊](https://tbrain.trendmicro.com.tw/Competitions/Details/26) 10/18 --- - progress - [Slide](https://docs.google.com/presentation/d/1nzcITCth-dhEyfcOQdo-ToqwwAckdTJK/edit?usp=sharing&ouid=103103346235533747462&rtpof=true&sd=true) - Disscussion - 討論論文內容 - To-do - 論文內數學符號必須清楚理解、了解程式碼與概念實作 - Extra - LDA 10/11 --- - Progress - [Slide](https://docs.google.com/presentation/d/1nQ-QQdLmEsFWGifD4-3v_dKO6a81Htnj/edit?usp=sharing&ouid=103103346235533747462&rtpof=true&sd=true) - Disscussion - 確認專題方向並提供相關資料 - To-do - 看完相關文章並確認最終專題競賽主題 - [Multi-hop Reading Comprehension through Question Decomposition and Rescoring (ACL 2019)](https://aclanthology.org/P19-1613.pdf )