# ASUS Ascent GX10 (NVIDIA GB10) Setup Guide **Hardware Platform:** ASUS Ascent GX10 (NVIDIA Grace Blackwell GB10) **System Architecture:** ARM64 / NVIDIA DGX OS(Base: Ubuntu 24.04.3) --- ## 1. Environment Initialization *This step only needs to be performed once per machine to establish a persistent development environment.* ### 1.1 Prepare Local Working Directory To prevent source code from being lost when the container is removed, create a directory on the GX10 host machine in advance: ```bash! mkdir -p ~/my_ai_project ``` ### 1.2 Pull the Correct Docker Image (Critical) **Important:** You must use version 26.01 or later. Older images do not support the Blackwell architecture (`sm_121`). ```bash! docker pull nvcr.io/nvidia/pytorch:26.01-py3 ``` ### 1.3 Launch the Ultimate Container Copy and execute the following command in full. This command enables GPU passthrough, memory optimization, volume mounting, and network port forwarding. * Port`8888`: Reserved for Jupyter Lab * Port`5000`: Reserved for Flask web streaming * `-v`: Mounts the local project directory into the container ```bash! docker run -dt \ --name gx10_ultimate \ --gpus all \ --ipc=host \ --ulimit memlock=-1 \ --ulimit stack=67108864 \ -p 8888:8888 \ -p 5000:5000 \ -v ~/my_ai_project:/workspace/project \ nvcr.io/nvidia/pytorch:26.01-py3 ``` ## 2. Daily Usage Workflow *Follow this procedure each time the system is powered on.* ### 2.1 Check Container Status ```bash! docker ps -a ``` ### 2.2 Start and Enter the Container If the container status is **Exited**, start it first and then enter: ```bash! docker start gx10_ultimate docker exec -it gx10_ultimate bash ``` *(If the status is already **Up**, simply execute the second command.)* ## 3. Environment Configuration and Package Installation *The following steps are executed inside the container (`root@xxxx:/workspace#`) and only need to be done once.* ### 3.1 Fix System Graphics Dependencies (Resolves `libxcb` / OpenCV-related errors) YOLO and OpenCV require the following low-level Linux libraries: ```bssh! apt-get update && apt-get install -y \ libgl1 \ libglib2.0-0 \ libsm6 \ libxrender1 \ libxext6 \ libxcb1 ``` ### 3.2 Install AI-Related Python Packages * **Ultralytics**: Includes YOLO11 / YOLOv8 * **Pycocotools**: COCO dataset utilities * **Nvitop**: GPU performance monitoring ```bash! pip install ultralytics \ pycocotools \ nvitop \ flask \ jupyterlab ``` ## 4. Verify GB10 Driver and Architecture Support Ensure that PyTorch correctly detects the Blackwell architecture (`sm_120`/`sm_121`): ```bash! python -c "import torch; print(f'Arch List: {torch.cuda.get_arch_list()}')" ``` * **Pass:** Output contains `sm_120` or `sm_121` * **Fail**: Output only goes up to `sm_90` → The Docker image is outdated; repeat Step 1.2 # 5. Performance Monitoring It is recommended to open a second terminal window for monitoring during training. **Option A: Official NVIDIA Tool** ```bash! watch -n 0.5 nvidia-smi ``` **Option B: Interactive GPU Monitor** ```bash! pip install nvitop nvitop -m ``` **Option C: System Resource Monitor** ```bash! btop ``` # 6. Troubleshooting | Error Message | Cause | Solution | | ------ | ---- | --- | | UserWarning: NVIDIA GB10... is not compatible | Outdated Docker image | Ensure you are using `26.01-py3` or newer | | ImportError: libxcb.so.1... | Missing Linux graphics libraries | Run the `apt-get install` command in Step 3.1 | | PIL.UnidentifiedImageError | Image download blocked (HTTP 403) | Use alternative image sources (e.g., GitHub raw links) or add a User-Agent header |