# 【Computer Vision 課程目錄】 <center> <img src="https://hackmd.io/_uploads/r17bdp1c0.png" style=" width: 80%; height: auto;"> <div style=" border-bottom: 3px solid #d9d9d9; display: inline-block; color: #999; padding: 3px;"> </div> </center> #### 【視覺機器學習模型】- https://hackmd.io/@Yuan1108/SyWCXpOlJx - Part1. 什麼是電腦視覺? - Part2. 電腦視覺任務 - Part3. 傳統電腦視覺 VS. 現代電腦視覺 - Part4. Machine Learning x Computer Vision - Part5. 機器學習模型的介紹 - Part6. Deep Learning x Computer Vision <br> #### 【卷積神經網路】 - https://hackmd.io/@Yuan1108/SyxNQadlJl - Part1. Convolution 運算 - Part2. 特徵偵測 - Part3. Convolution On Colorful image - Part4. Convolution filter hyper parameter - Part5. ReLU - Part6. Pooling Layer - Part7. Fully connected layers - Part8. Softmax layer - Part9. Putting together - Part10. 計算參數量 - Part11. 為什麼CNN有用? - Part12. 訓練CNN - Part13. Backward propagation - Part14. Gradient descent <br> #### 【模型品質與改進】 - https://hackmd.io/@Yuan1108/BJI4S2Mgkg - Part1. 簡介 - Part2. 基本的評估指標 - Part3. Overfitting and Generalization - Part4. Regularization Methods <br> #### 【進階影像視覺模型】- https://hackmd.io/@Yuan1108/SyaWYb3yJx - Part1. LeNet - Part2. AlexNet - Part3. VGGNet - Part4. ResNet - Part5. MobileNet - Part6. Inception Network - Part7. SqueezeNet - Part8. EfficientNet - Part9. DenseNet - Part10. Autoencoder - Part11. Rank-N or Top-N Accuracy <br> #### 【遷移學習與微調】 - https://hackmd.io/@Yuan1108/rk9rPcIx1e - Part1. Callbacks - Part2. 遷移學習 <br> #### 【物件偵測 I】 - https://hackmd.io/@Yuan1108/rJI9VDeMkx - Part1. 什麼是物件偵測 - Part2. 物件偵測器 - Part3. Object Segmentation - Part4. Classification vs Detection vs Segmentation - Part5. 評估物件偵測器 - Part6. Non-Maximum Suppression - Part7. R-CNN - Part8. Fast R-CNNs - Part9. Faster R-CNNs 架構 - Part10. Single Shot Detectors (SSDs) - Part11. YOLO <br> #### 【物件偵測 II】- https://hackmd.io/@Yuan1108/rJxlgWjmyg - Part1. EfficientDet - Part2. Vision Transformer (ViT) - Part3. Detection Transformer (DETR) - Part4. DeepSORT <br> #### 【影像分割】- https://hackmd.io/@Yuan1108/HkwwNZoQkl - Part1. What is Segmentation? - Part2. Segmentation Models - Part3. U-Net - Part4. SegNet (Semantic Segmentation) - Part5. Mask R-CNN - Part6. Comparison - Part7. Segmentation Metrics <br> #### 【Autoencoder and GAN】- https://hackmd.io/@Yuan1108/SkJP-wENkg - Part1. Autoencoders - Part2. GAN <br> #### 【模型壓縮(Network Compression)】- https://hackmd.io/@Yuan1108/ryXiBjQSyx - Part1. 簡介 - Part2. Why do we need network compression? - Part3. Network pruning - Part4. Weight Pruning <br> #### 【孿生網路(Siamese Networks)】- https://hackmd.io/@Yuan1108/ByqqgnQHyl - Part1. What are Siamese Networks - Part2. What are Siamese Networks used for? - Part3. High Level Diagram of a Siamese Network - Part4. Siamese Network Architecture - Part5. Siamese Networks Loss Functions - Part6. Training Siamese Networks - Part7. Facial Recognition <br> #### 【電腦視覺作業 I:MNIST】- https://hackmd.io/@Yuan1108/rkqVO5mZye #### 【電腦視覺作業 II:CIFAR-10】- https://hackmd.io/@Yuan1108/rySVMuVbye #### 【電腦視覺作業 III:Flower Class】- https://hackmd.io/@Yuan1108/ryBYX5EZyl
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up