# 程式碼 ```python= import numpy as np import matplotlib.pyplot as plt import pywt import pywt.data # Load image original = cv2.imread('US8925303B2.png', 0) # Wavelet transform of image, and plot approximation and details titles = ['Approximation', ' Horizontal detail', 'Vertical detail', 'Diagonal detail'] coeffs2 = pywt.dwt2(original, 'bior1.3') LL, (LH, HL, HH) = coeffs2 fig = plt.figure(figsize=(20, 20)) for i, a in enumerate([LL, LH, HL, HH]): ax = fig.add_subplot(1, 4, i + 1) ax.imshow(a, interpolation="nearest", cmap='gray') ax.set_title(titles[i], fontsize=10) ax.set_xticks([]) ax.set_yticks([]) fig.tight_layout() plt.show() ``` ![](https://i.imgur.com/mqth97J.png) detect 影片程式碼 ```python= import cv2 import numpy as np from PIL import Image import timeit log_dir="/content/gdrive/My Drive/Data/keras-yolo3/logs/000/" classes_path = '/content/gdrive/My Drive/Data/keras-yolo3/class.txt' # %cd '/content/gdrive/My Drive/Day050/keras-yolo3-master/' yolo_model = YOLO(model_path=log_dir + 'trained_weights_final.h5', classes_path=classes_path) starttime = timeit.default_timer() cap = cv2.VideoCapture('/content/Raccoon.mp4') # 使用 XVID 編碼 fourcc = cv2.VideoWriter_fourcc(*'XVID') # 建立 VideoWriter 物件,輸出影片至 output.avi # FPS 值為 30.0,解析度為 1280*720 out = cv2.VideoWriter('raccoon.avi', fourcc, 30.0, (1280, 720)) # k = 0 # while(cap.isOpened()): # ret, frame = cap.read() # if ret == True: # # 寫入影格 # image = Image.fromarray(frame) # image = np.array(yolo_model.detect_image(image)) # out.write(image) # k += 1 # else: # break # 釋放所有資源 cap.release() out.release() print('共耗時:',round((timeit.default_timer() - starttime), 2), '秒,FPS:', round(k/(timeit.default_timer() - starttime), 2)) ``` ```python= ``` ```python= ``` ```python= ``` ```python= ```