# 程式碼
```python=
import numpy as np
import matplotlib.pyplot as plt
import pywt
import pywt.data
# Load image
original = cv2.imread('US8925303B2.png', 0)
# Wavelet transform of image, and plot approximation and details
titles = ['Approximation', ' Horizontal detail',
'Vertical detail', 'Diagonal detail']
coeffs2 = pywt.dwt2(original, 'bior1.3')
LL, (LH, HL, HH) = coeffs2
fig = plt.figure(figsize=(20, 20))
for i, a in enumerate([LL, LH, HL, HH]):
ax = fig.add_subplot(1, 4, i + 1)
ax.imshow(a, interpolation="nearest", cmap='gray')
ax.set_title(titles[i], fontsize=10)
ax.set_xticks([])
ax.set_yticks([])
fig.tight_layout()
plt.show()
```

detect 影片程式碼
```python=
import cv2
import numpy as np
from PIL import Image
import timeit
log_dir="/content/gdrive/My Drive/Data/keras-yolo3/logs/000/"
classes_path = '/content/gdrive/My Drive/Data/keras-yolo3/class.txt'
# %cd '/content/gdrive/My Drive/Day050/keras-yolo3-master/'
yolo_model = YOLO(model_path=log_dir + 'trained_weights_final.h5', classes_path=classes_path)
starttime = timeit.default_timer()
cap = cv2.VideoCapture('/content/Raccoon.mp4')
# 使用 XVID 編碼
fourcc = cv2.VideoWriter_fourcc(*'XVID')
# 建立 VideoWriter 物件,輸出影片至 output.avi
# FPS 值為 30.0,解析度為 1280*720
out = cv2.VideoWriter('raccoon.avi', fourcc, 30.0, (1280, 720))
# k = 0
# while(cap.isOpened()):
# ret, frame = cap.read()
# if ret == True:
# # 寫入影格
# image = Image.fromarray(frame)
# image = np.array(yolo_model.detect_image(image))
# out.write(image)
# k += 1
# else:
# break
# 釋放所有資源
cap.release()
out.release()
print('共耗時:',round((timeit.default_timer() - starttime), 2), '秒,FPS:', round(k/(timeit.default_timer() - starttime), 2))
```
```python=
```
```python=
```
```python=
```
```python=
```