# 7/8 Paper #8
## iCaRL: Incremental Classifier and Representation Learning
[toc]
----
## Abstract
(2016, Nov 23)
New Idea: class-incremental learning.
1. Be trainable from a stream of data on different batch of classes training time.
2. multi-class classifier
3. memory should be bound so far or grow slowly.
----
## 1st Author

---
## Briefly illustraction

High Level interpretation:
On Classify:
$\theta_s$ -> feature extractor $\theta_s: X \rightarrow \mathbb{R}^{d}$
$\theta_o$ -> output layer with sigmoid function
----
Assume we have 6 classes on dataset:
We split 6 class into two class each time. After training on 5,6 class:
we want to classify $X^{y1}, X^{y2},X^{y3}, X^{y4},X^{y5}, X^{y6}$.
----
1. sample data on all class. $X = \{X^{y1},X^{y2}, X^{y3}, X^{y4} X^{y5}, X^{y6}\}$ where $X^{y1} = \{ x_{1}^{y1}, x_{2}^{y1}, x_{3}^{y1} \}$ three data point on a set $X_{1}^{y1}$
2. Forward $X$ to model and get $\theta_o(X)$ and $\theta_s(X)$
3. Calculate each class mean representaion from each $\theta_s(X^{y_n})$
4. find the most closed mean label representation to each data and assign $y^{*}$
---
## Detail
----

----

----

----

----

---
## Experiment Setting
RESNET = Feature extractor
one output layer with sigmoid layer for each classes task
----
hybric setup:
hybrid 1: use classification accuracy to calculate accuracy
hybrid 2: the exemplars for classification but not add distillation
hybrid 3: training use exemplar representation learning and not distillation but testing not use the exemplars for classification
different k setup: memory capacity
---
## Result
----

----

----

----

----
---
<style>
img {
width: 80%;
height: auto;
}
</style>
---

----

---
<style>
.reveal {
font-size: 24px;
}
img {
width: 60%;
height: auto;
}
div {
resize: both;
}
</style>
---
{"metaMigratedAt":"2023-06-14T22:43:09.238Z","metaMigratedFrom":"YAML","title":"iCaRL- Incremental Classifier and Representation Learning","breaks":true,"slideOptions":"{\"progress\":true,\"slideNumber\":true,\"overview\":true,\"theme\":\"beige\",\"transition\":\"fade\",\"spotlight\":{\"enabled\":true}}","contributors":"[{\"id\":\"622370bd-3571-44f0-a0b7-c19b051347e1\",\"add\":4113,\"del\":1397}]"}