--- title: Learning without Forgetting tags: LLL --- # 7/4 Paper #6 ### Learning without Forgetting [toc] ### 預備知識 無 ### Background IEEE 2017 ### 作者 李之仲 ![](https://i.imgur.com/IPheFS7.png) 北京 清華大學 -> CMU -> 芭芭拉大學 ### Abstract: lifelong learning,讓model 先學A任務,再學B任務,之後在兩者的表現上都很好,(重點是sequential train以及 不會災難性遺忘) 在以往的作法內,最trivial的作法就是保留A任務的data然後,在train B任務的時候,倒進來dataset, 一起train讓兩者的performance都不會掉太多。在這裡,作者提出一個不會使用到舊任務data的方法。 --- ### Overview 概述了3種和此方法相關的作法 ![](https://i.imgur.com/P2wTnqt.png) Fine-tuning: add new layer and fine-tune all parameter with small learning rate Feature Extraction: use the extract feature on the old model and add layer for prediction (just tuning the addition layer) ---- ### Methods: Defintion: $\theta_s$: original shared network $\theta_o$: original output FC $\theta_n$: new FC Layer for new task --- Defintion: $\theta_s$: original shared network $\theta_o$: original output FC $\theta_n$: new FC Layer for new task Knowledge Distillation loss: ![](https://i.imgur.com/uT4fVI6.png) ![](https://i.imgur.com/sj7Lwhr.png) new task loss: ![](https://i.imgur.com/5F1qWcj.png) ![](https://i.imgur.com/Auoplhr.png) ### Benefit: Relationship to joint training: didn't use m task training data Efficiency comparison: compare with Feature Extraction: slower but high performance on both two task compare with jointly training: faster and didn't use old dataset for training. --- ### Experiment, Result: Dataset Detail: original dataset: ILSVRC 2012 (subset of imagenet)(1,000 classes and more than 1,000,000 training images) Places365-standard dataset (1, 600, 000 training images) new task: 1. PASCAL VOC 2012 image classification("VOC") 2. Caltech-UCSD Birds-200-2011 classification("CUB") 3. MIT indoor scene classification("Scenes") 4. MNIST training data for them: 1. 5,717 for VOC; <--> ILSVRC 2012 2. 5,994 for CUB; 3. 5,360 for Scenes. <--> Places365-standard dataset ![](https://i.imgur.com/H8EOFX9.png) ---- Multiple new task: VOC(3 part) transport, animals and objects scene( large rooms, medium rooms and small rooms) ![](https://i.imgur.com/zh4Uh8X.png) --- Design choices and alternatives: ![](https://i.imgur.com/sLCCTM4.png) ![](https://i.imgur.com/lEcYrzQ.png) ![](https://i.imgur.com/HFYMiRA.png) ### Detail: expansion: ![](https://i.imgur.com/Q3tPHrU.png)