Useful resources === :::info **Four good bioinformatics learning resources:** - https://hbctraining.github.io/main/ - https://nbis.se/training/ - http://gtpb.igc.gulbenkian.pt/bicourses/Course_materials.html - https://www.cruk.cam.ac.uk/core-facilities/bioinformatics-core/training ::: ### Other leardning sources: ***Updated: 07.08.2023*** 1. How to make a Volcano plot: https://www.bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html 2. - String match: https://stringr.tidyverse.org/articles/regular-expressions.html - string pattern match: https://rstudio-pubs-static.s3.amazonaws.com/74603_76cd14d5983f47408fdf0b323550b846.html - cheet sheet: https://rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf 3. Color paletter: http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette 4. Graphs and apps - use R for basic graphs: http://rstudio-pubs-static.s3.amazonaws.com/7953_4e3efd5b9415444ca065b1167862c349.html - all graphs: (1) https://www.data-to-viz.com/ (2)https://ying-ge.github.io/FigureYa/ - grphas + apps: https://plotly.com/ - draw figures: GraphPad; Adobe Photoshop; Adobe Illustrator - Source for icons and images: Biorender; Smart servier 5. Learning RNA seq: - mapping: https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon/ (2020 version, more on Salmon) + https://hbctraining.github.io/Intro-to-rnaseq-hpc-O2/ (2019, more details on STAR and QC). - DEG analysis: https://hbctraining.github.io/DGE_workshop_salmon_online/ - RNA seq: https://uppsala.instructure.com/courses/76870/pages/contents - RNA-seq+scRNA: https://gtpb.github.io/ADER19F/ - RNA-seq and pathway analysis: https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2021/ 6. scRNA sequencing - watch videos and practise the code: https://uppsala.instructure.com/courses/52011 - Single cell RNA-seq: https://hbctraining.github.io/scRNA-seq_online/schedule/links-to-lessons.html 7. Epigenomics: https://nbis-workshop-epigenomics.readthedocs.io/en/latest/content/tutorials.html 8. Omics Integration and Genome-scale Metabolic model: https://uppsala.instructure.com/courses/75208 9. Neural Nets and Deep learning: https://uppsala.instructure.com/courses/47910/pages 8. Computational quantification immune cells and deconvolution: https://gtpb.github.io/IO17/ 9. Tools for Reproducible Research: https://uppsala.instructure.com/courses/51980 10. How to use supercomputer YZ: https://supercomputingwales.github.io/SCW-tutorial/ 11. PhD scholarship/travel grants: https://www.bifonds.de/fellowships-grants/fellowships-grants.html :::success **How to give a good talk** - I suggest you read three below papers before preparing your tak: --[How to tell a compelling story in scientific presentations](https://www.nature.com/articles/d41586-021-03603-2) --[How to give a great scientific talk](https://www.nature.com/articles/d41586-018-07780-5) --[Prioritize the needs of the audience when giving a presentation](https://www.nature.com/articles/d41586-018-06021-z) - You can also fine others' experience via: --https://www.nature.com/articles/d41586-019-01574- --https://threadreaderapp.com/thread/1597793126454001664.html ::: ### Grant/Scholarship resources: #### -- PhD scholarship/visiting/training travel grants: https://www.bifonds.de/fellowships-grants/fellowships-grants.html #### -- Travel grants for meetings/conferences: https://www.biologists.com/grants/dmm-conference-travel-grants/ #### https://nnukrf.org.uk/how-to-apply