--- tags: Pure Mathmatics --- # Integration ## (c) Dr. Zhou, UK :uk:  :key: :::success 1. $\int {y}\;dx=\frac{2X^4}{4}+\frac{5X^3}{3}-\frac{7X^2}{2}+10x+c=\frac{X^4}{2}+\frac{5X^3}{3}-\frac{7X^2}{2}+10x+c$ 2. $\int{(3x^2+7x-2)}\;dx=X^3+\frac{7X^2}{2}-2x+c$ 3. $\int(x+4)(x-3)~dx=\int(x^2+x-12)\;dx=\frac{X^3}{3}+\frac{X^2}{2}-12x+c$ :::  :key: :::success  :::  :key: :::success $\int_{1}^{3}(x+4)(x-3)\;dx=\int_{1}^{3}(x^2+x-12)~dx=\left[\frac{x^3}{3}+\frac{x^2}{2}-12x+c\right]_{1}^{3}$ $=\left(\frac{3^3}{3}+\frac{3^2}{2}-12\times3\right)-\left(\frac{1^3}{3}+\frac{1^2}{2}-12\times1\right)=-\frac{45}{2}+\frac{67}{6}=-\frac{34}{3}$ :::  :key: :::success  :::  :key: :::success  :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up