# 矩陣快速冪
費式數列為例:
=
f(0)=1; f(1)=1; f(2)=2; f(3)=3; f(4)=5...
n=1 代入得到f(2)=2為左乘狀態轉移矩陣一次。
求f(x)必須左乘狀態轉移矩陣x-1次:
=
若轉移方程出現常數,則轉移矩陣必須多一個維度的常數項。
ex: f(x+1) = a * f(x) + b
則:

## Example
f(x+1)=2f(x)+4f(x-1); f(0)=1, f(1)=4
答案mod1000000007
```
#include<bits/stdc++.h>
using namespace std;
void mul(vector<vector<long long>> &a,vector<vector<long long>> &b,vector<vector<long long>> &ans){
//size=2x2
vector<vector<long long>> temp(2,vector<long long>(2,0));
for(int i=0;i<2;++i){
for(int j=0;j<2;++j){
for(int k=0;k<2;++k){
temp[i][j]+=(a[i][k]*b[k][j])%1000000007;
}
}
}
for(int i=0;i<2;++i){
for(int j=0;j<2;++j){
temp[i][j]%=1000000007;
}
}
ans=temp;
}
vector<vector<long long>> fastpow(long long n){
vector<vector<long long>> base(2,vector<long long>(2,0));
base[0][0]=2;base[0][1]=4;
base[1][0]=1;base[1][1]=0;
vector<vector<long long>> ans(2,vector<long long>(2,0));
ans[0][0]=1;ans[0][1]=0;
ans[1][0]=0;ans[1][1]=1;
while(n!=0){
if(n&1){
mul(base,ans,ans);
}
mul(base,base,base);
n>>=1;
}
return ans;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(0);
long long n;
cin>>n;
if(n==1){
cout<<"1"<<endl;
return 0;
}else if(n==2){
cout<<"4"<<endl;
return 0;
}
vector<vector<long long>> vec=fastpow(n-2);
long long sum=vec[0][0]*4+vec[0][1]*1;
cout<<sum%1000000007;
return 0;
}
```