# 矩陣快速冪 費式數列為例: ![](https://i.imgur.com/mzc9xJb.png =10%x)![](https://i.imgur.com/wdqAr7F.png =15%x)=![](https://i.imgur.com/bwgPf37.png =15%x) f(0)=1; f(1)=1; f(2)=2; f(3)=3; f(4)=5... n=1 代入得到f(2)=2為左乘狀態轉移矩陣一次。 求f(x)必須左乘狀態轉移矩陣x-1次: ![](https://i.imgur.com/g1qW0TD.png =15%x)![](https://i.imgur.com/dZmzvO6.png =4%x)=![](https://i.imgur.com/xvtKfNl.png =15%x) 若轉移方程出現常數,則轉移矩陣必須多一個維度的常數項。 ex: f(x+1) = a * f(x) + b 則: ![](https://i.imgur.com/BL0Q8FZ.jpg) ## Example f(x+1)=2f(x)+4f(x-1); f(0)=1, f(1)=4 答案mod1000000007 ``` #include<bits/stdc++.h> using namespace std; void mul(vector<vector<long long>> &a,vector<vector<long long>> &b,vector<vector<long long>> &ans){ //size=2x2 vector<vector<long long>> temp(2,vector<long long>(2,0)); for(int i=0;i<2;++i){ for(int j=0;j<2;++j){ for(int k=0;k<2;++k){ temp[i][j]+=(a[i][k]*b[k][j])%1000000007; } } } for(int i=0;i<2;++i){ for(int j=0;j<2;++j){ temp[i][j]%=1000000007; } } ans=temp; } vector<vector<long long>> fastpow(long long n){ vector<vector<long long>> base(2,vector<long long>(2,0)); base[0][0]=2;base[0][1]=4; base[1][0]=1;base[1][1]=0; vector<vector<long long>> ans(2,vector<long long>(2,0)); ans[0][0]=1;ans[0][1]=0; ans[1][0]=0;ans[1][1]=1; while(n!=0){ if(n&1){ mul(base,ans,ans); } mul(base,base,base); n>>=1; } return ans; } int main(){ ios_base::sync_with_stdio(false); cin.tie(0); long long n; cin>>n; if(n==1){ cout<<"1"<<endl; return 0; }else if(n==2){ cout<<"4"<<endl; return 0; } vector<vector<long long>> vec=fastpow(n-2); long long sum=vec[0][0]*4+vec[0][1]*1; cout<<sum%1000000007; return 0; } ```