Ch13 Antennas === In order to have EM wave, we need **Time Varying Source**: * **加速電荷** or **AC current** **Antenna**: 承載這些Source的就是天線 :::info 分析上使用球面座標:$E(r, \theta, \phi, t) , H(r, \theta, \phi, t)$ ::: # Hertzian Dipole antenna 由電流匯入的位置,分成兩種 Monopole : 從天線的**末端**輸入電流 Dipole : 從天線的**中間**輸入電流 > 為什麼會有Dipole? 實際上是輸入了cos(wt)交流電,等效成了一個Dipole > 求E時,看成electric dipole > 求H時,看成current element ### 步驟一(求A) 因為$H={1\over\mu}\nabla \times{\overrightarrow{A}}$ (curl A除以$\mu$) * 要求磁場,就要先求$\overrightarrow{A}$(vector potential) 考慮到波傳遞的時間,修正後的Retarded Vector Potential $\overrightarrow{A}(r,t)$:$${\mu I(t-r/u)dl\over4\pi r(t-r/u)}a_z$$ > Retarded Current: $$I_0 cos(\omega t-\beta r)$$ (phasor: $Re[I_0 e^{j(\omega t-\beta r)}]$ ) * 若為**Stationary antenna**:$$A_s = {\mu I_0dl\over4\pi r}e^{-j\beta r}(cos\theta a_r-sin\theta a_{\theta})$$ ### 步驟二(求H): :::warning 磁場只有$\phi$分量 $H_{\phi s}$ ::: ![Screenshot 2024-06-13 at 4.26.27 AM](https://hackmd.io/_uploads/H15zrKvSC.png =500x) ### 步驟三(求E): :::warning 電場有$r, \theta$分量 $E_{rs}, E_{\theta s}$ ::: ![Screenshot 2024-06-13 at 4.34.10 AM](https://hackmd.io/_uploads/r1soRtPHC.png =400x) ## Far Field: 條件:當$r\ge {e^{-j\beta r}\over r}$ , d為天線最長的長度 ### Far Field Characteristics: * $E_{\theta s}$ and $H_{\phi s}$ ⇨ **In phase** , **orthgonal**. (像平面波) * 單位面積之**Time-average power density**:$$P_{ave}={\eta\beta^2I_0^2dl^2\over 32\pi^2r^2 }sin^2\theta$$ * 整個球面之**Time-average rediated power**: $$P_{rad}=\int P_{ave}\cdot dS$$ :::spoiler 化簡過程:$$=\int_{\phi =0}^{2\pi}\int_{\theta =0}^{\pi}{\eta\beta^2I_0^2dl^2\over 32\pi^2r^2 }sin^2\theta\cdot r^2sin\theta \ d\theta d\phi$$ $$={\eta\beta^2I_0^2dl^2\over 16\pi}\cdot {4\over 3} $$ ::: :::info In free space: $P_{rad}=40\pi^2I_0^2[{dl\over\lambda}]^2$ ::: * 等效輻射R:$R_{rad}={2P_{rad}\over I_0^2}$ ## Antenna Characteristic * ### Antenna & Radiation Pattern Pattern就是把far field的**E,H**圖像化 * **Hertzian Dipole**的Radiation pattern: $H_{\phi s}, E_{\theta s}$ 皆約等於 $sin\theta$ Normalized pattern function:$$f(\theta)=|sin\theta|$$ * **General** Radiation pattern: Normalized pattern function:$$f(\theta ,\phi)$$ 通常只討論兩個特定平面 * E-plane: $f(\theta,0)$ * H-plane: $f({\pi \over 2}, \phi)$ * **Power pattern**:$$f^2(\theta)=sin^2\theta$$ * ### Radiation Intensity $U(\theta, \phi)$ 定義$U(\theta, \phi)=r^2 P_{ave} \propto f^2(\theta, \phi)$ 在求整顆球power($P_{rad}$)時,可寫成:$$\int_{\phi =0}^{2\pi}\int_{\theta =0}^{\pi}U(\theta,\phi) d\Omega$$ ==**Average radiation intensity**: $U_{ave}={P_{ave} \over 4\pi}$== * ### Directive Gain($G_d$) & Directivity(D) Directive Gain: 該天線在每個角度的Gain為多少$$G_d(\theta,\phi)={U(\theta,\phi)\over U_{ave}} = {4\pi f^2(\theta,\phi)\over \int f^2(\theta, \phi)d\Omega} = ({P_{ave}(\theta,\phi)\over P_{rad}})4\pi r^2$$ Directivity:天線Gain最強的方向$$D={U_{max}\over U_{ave}} = {4\pi U_{max}\over P_{rad}}$$ Power Gain:$$G_p(\theta,\phi) = \eta_r G_d(\theta,\phi)$$ $\eta_r$:Radiation Efficiency$$\eta_r = {P_{rad}\over P_{in}}$$ :::info 轉dB⇨$10log_{10}$(D or G) ::: * ### Beam solid angle($\Omega_A$) 將radiation pattern等效成一圓錐,得到的**立體角**: $$\Omega_A = {4\pi\over D}$$ # Pratical Antenna 記兩個場:$$H_{\phi s} = {jI_0e^{-j\beta r}cos({\pi \over 2}cos\theta)\over 2\pi rsin\theta}$$ ## Half-Wave Dipole Antennas ![image](https://hackmd.io/_uploads/BJHZR6tBC.png =150x) 解法: 1. 從$H_0$推$I_0$ 2. $R_{rad}(_{\lambda\over 2})$固定為73$\Omega$ 3. 利用以下公式得$P_{rad}$ $$P_{rad} = {1\over 2}I_0^2 R_{rad}$$ ## Quarter-Wave Monopole Antenna 基本和半波天線一樣,只是只取一半。 因此解法上,只要注意$R_{rad} = 36.5\Omega$ Power也就要$* {1\over 2}$ ## Small-loop Antenna * ### Duality: Hertzian -> Loop $dl a_\phi$ -> $j\beta S a_\theta = j{2\pi S\over \lambda}a_\theta$ $$S(面積) = N\pi\rho_0^2,\ \rho_0 = 半徑, N=圈數$$ # Antenna Arrays # Effective Area and the Friis Equation * ### Effective Area: $${A_E \over D} = {\lambda^2\over 4\pi}$$ * ### Friis Transmission Formula:$${P_r\over P_t} = G_{dt}G_{dr}[{\lambda\over4\pi r}]^2$$ # Radar Equation :::danger # 解題要背的公式: ### $R_{rad}$ * Hertzian:$$R_{rad} = 80\pi^2({dl\over\lambda})^2$$ * Half-wave: $$R_{rad} = 73\ \Omega$$ * Quarter-wave: $$R_{rad} = 36.5\ \Omega$$ ### Far field: $H_s=H_0{e^{-j\beta r}\over r}a_H$, * Hertzian :$$|H_s| = H_0 = {j\beta I_0 dl sin\theta\over4\pi} \ \ , dl = Hertzian dipole的長度$$ * Half-wave, Quarter-wave : $$H_0 = {jI_0 cos({\pi \over 2}cos\theta)\over2\pi sin\theta}$$ * Loop : $$S(面積) = N\pi\rho_0^2,\ \rho_0 = 半徑, N=圈數$$ :::