# Overview on Gene Regulatory Network ###### tags: `Bioinformatics`, `Gene Regulatory Network` ## Network Reconstruction Methods | Year | Name | Data | Method | IR<sup>1</sup> | CR<sup>2</sup> | S<sup>3</sup> | |---|---|---|---|:---:|:---:|:---:| | 2006 | _ARACNE_ | • mRNA | • Mutual Information<br>• Remove weakest edge | ✓ | ⨉ | ⨉ | | 2007 | _CLR_ | • mRNA | • Mutual Information<br>• $z_{ij}=\sqrt{z_i^2+z_j^2}$| ✓ | ⨉| ⨉ | | 2007 | MRNET | • mRNA | • Mutual Information<br> • MRMR | ✓ | ⨉ | ⨉ | | 2007 | LICORN | • mRNA<br>• TF (xprs) | • Discrete Set<br> • Apriori Algorithm | ? | ✓ | ✓ | | 2008 | WGCNA | • mRNA | • Weighted Correlation | ⨉ | ⨉ | ⨉ | | 2010 | GENIE3 | • mRNA | • Random Forest<br>• Extra Trees | ✓ | ✓ | ⨉ | | 2012 | TIGRESS | • mRNA | • LARS Regresion<br>• Stability Selection | ✓ | ⨉ | ✓ | | 2013 | PANDA | • mRNA<br>• TFBS<br>• PPI<br>• miRNA | • Message Passing | ⨉ | ✓ | ⨉ | | 2014 | H-LICORN | • mRNA<br> • TF (xprs) | • Discrete Set<br> • Apriori Algorithm<br> • Linear Regression<br>• Bagging | ✓ | ✓ | ✓ | | 2014 | _SNF<sup>*</sup>_ | • mRNA<br>• Methylation<br>• miRNA | • Message Passing | | | | 2015 | iRafNet | • mRNA<br>• Matrix | • Random Forest | ✓ | ✓ | ⨉ | | 2015 | _cMonkey2_ | • mRNA<br> • TFBS<br> • Pathway| • K-Means | ⨉ | ✓ | ? | | 2015 | COREGNET | • mRNA<br> • TF<br> | • H-LICORN<br>• Data integration | ✓ | ✓ | ✓ | <sup>1</sup> Models identify indirect regulation or not <sup>2</sup> Models identify corregulation of transciption factors or not <sup>3</sup> Sign of edges (✓ signed, ⨉: unsigned) <sup>*</sup> Use message passing methods to identify the tumor subtypes for patients (doesn't model gene regulatory network)
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up