**Old Japanese Numbers**, which is the ancestor to the *Wago* numbers of modern Japanese. It gave way to Middle Chinese Loanwords as plain counting numbers, and is tied to some limited situations, like some specific classifiers (eg 一粒<pitətubu 'one grain') or preserved in some specific sayings (eg 八百万の神 < japəjərəndu '8 million' + nə '<sub>POSS</sub>'+ kamwi 'god(s)'). Following are two groups of numbers, one being prime factorials and the other the regular integer factorials, in no particular order.
*[prime factorials]: The first 8 terms are: 2, 6, 30, 210, 2310, 30030, 510510, 9699690.
*[integer factorials]: The first 8 terms are: 1, 2, 6, 24, 120, 720, 5040, 40320.
<!--TODO: CHECK THE NUMBERS AGAIN-->
| Group A | Group 1 |
| ------------------------------------------- | ------------------------------------------------------------- |
| (a) iti amari jətso | (1) mu |
|(b) pitə|(2) kəkənəpəjərəndu amari mutsojərəndu amari kəkənəjərəndu amari kəkənəti amari mupə amari kəkənətso|
| \(c\) momo amari putatso | (3) itsojərəndu amari jərəndu amari ipə amari təwo |
| (d) nanapə amari putatso | (4) putati amari mipə amari təwo |
| (e) mu | (5) mijərəndu amari mitso |
| (f) putatsomari jə | (6) puta |
| (g) jəjərəndu amari mipə <br> amari putatso | (7) putapə amari təwo |
| (h) puta | (8) mitso |
## Problems
Following are the problems along with its answers.
*[its answers]: Click on the black seal to reveal.
1. Identify which group is which and explain your choice. ||Group (a) is integer factorial; group (1) is prime factorial.
Possible Reasons: (nonexhaustive list)||
- ||pitə means 1 and only occurs in one of the two groups.||
- || (2) is the longest and looks like the largest number.||
1. Arrange the numbers from both groups in ascending order.
||bhefcdag, 61874532||
1. Translate the following numbers into Old Japanese: 17, 83, 100.||təwomari nana, jatsomari mi, momo||