**Old Japanese Numbers**, which is the ancestor to the *Wago* numbers of modern Japanese. It gave way to Middle Chinese Loanwords as plain counting numbers, and is tied to some limited situations, like some specific classifiers (eg 一粒<pitətubu 'one grain') or preserved in some specific sayings (eg 八百万の神 < japəjərəndu '8 million' + nə '<sub>POSS</sub>'+ kamwi 'god(s)'). Following are two groups of numbers, one being prime factorials and the other the regular integer factorials, in no particular order. *[prime factorials]: The first 8 terms are: 2, 6, 30, 210, 2310, 30030, 510510, 9699690. *[integer factorials]: The first 8 terms are: 1, 2, 6, 24, 120, 720, 5040, 40320. <!--TODO: CHECK THE NUMBERS AGAIN--> | Group A | Group 1 | | ------------------------------------------- | ------------------------------------------------------------- | | (a) iti amari jətso | (1) mu | |(b) pitə|(2) kəkənəpəjərəndu amari mutsojərəndu amari kəkənəjərəndu amari kəkənəti amari mupə amari kəkənətso| | \(c\) momo amari putatso | (3) itsojərəndu amari jərəndu amari ipə amari təwo | | (d) nanapə amari putatso | (4) putati amari mipə amari təwo | | (e) mu | (5) mijərəndu amari mitso | | (f) putatsomari jə | (6) puta | | (g) jəjərəndu amari mipə <br> amari putatso | (7) putapə amari təwo | | (h) puta | (8) mitso | ## Problems Following are the problems along with its answers. *[its answers]: Click on the black seal to reveal. 1. Identify which group is which and explain your choice. ||Group (a) is integer factorial; group (1) is prime factorial. Possible Reasons: (nonexhaustive list)|| - ||pitə means 1 and only occurs in one of the two groups.|| - || (2) is the longest and looks like the largest number.|| 1. Arrange the numbers from both groups in ascending order. ||bhefcdag, 61874532|| 1. Translate the following numbers into Old Japanese: 17, 83, 100.||təwomari nana, jatsomari mi, momo||