Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hey, Cynthia I found a calculus problem on locating the tangent line equation from our practice exam that will be on our upcoming exam, and I will explain it to you in detail if you are still having problems with the concept? </div></div> <div><div class="alert blue"> Sure, you know I need help with this section because I just do not have the time for a tutor or the drop-in lab. </div><img class="right"/></div> </div></div> <div><img class="left"/><div class="alert gray"> Question #1 Find the equation for the tangent line to the graph of the function 5x^2-10x+20 at the point x=5, and find the formula for the derivative of a function, using the limit-based definition of the derivative. </div></div> <div><div class="alert blue"> How do I use the definition of the derivative in helping with locating the tangent line? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> To use the definition of the derivative you have to follow this step: Use the formula for determining the limit as h approaches zero, for the equation 5x^2-10x+20 for determining the tangent line which is: $f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}$ $f'(x)=\lim_{h \to 0}\frac{[5(x+h)^2+10(x+h)-20]-[5x^2+10x+20]}{h}$ $f'(x)=\lim_{h \to 0}\frac{[5(x^2+2xh+h^2)-10(x+h)+20]-(5x^2+10x+20)}{h}$ $f'(x)=\lim_{h \to 0}\frac{(5x^2+10xh+5h^2-10x-10h+20-5x^2+10x-20)}{h}$ $f'(x)=\lim_{h \to 0}\frac{(10xh+5h^2-10h)}{h}$ $f'(x)=\lim_{h \to 0}\frac{h(10x+5h-10)}{h}$ $f'(x)={10x+5h-10}$ $f'(x)=10x+5(0)-10$ $f'(x)=10x-10$ Now that we have the derivative of the original formula, next we have to find the tangent line for the function 5x^2-10x+20. First we have to evaluate the original function at the point x=5 for our b component of our linear formula as follows; $b=5x^2-10x+20$ $b=(5(5)^2+10(5)+20)$ $b=95$ Next, we have to evaluate the derivative at the point x=5 for our slope or m-value to our linear formula. $m=10x-10$ $m=10(5)-10$ $m=40$ Plugging your values into the formula of y=mx+b is your final step in creating your linear formula and now you can plug in any value near the point x=5 for an approximation: y=40(x-5)+95 The formula above could be used to estimate a linear approximation for any give point close to x=5, so Cynthia you would chose a number and plug it into the x-value of the linear formula. </div></div> <div><div class="alert blue"> Okay, thank you for simplifying for me how to find a tangent line when given a function and a value for x and on how to derive the formula. from the function at any point. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> No problem and we will talk after class to discuss our exam results. </div></div> <div><div class="alert blue"> Okay, and thanks for everything. </div><img class="alert blue"> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.