Math 181 Miniproject 3: Texting Lesson.md
---
My lesson Topic
===
<style>
body {
background-color: #eeeeee;
}
h1 {
color: maroon;
margin-left: 40px;
}
.gray {
margin-left: 50px ;
margin-right: 29%;
font-weight: 500;
color: #000000;
background-color: #cccccc;
border-color: #aaaaaa;
}
.blue {
display: inline-block;
margin-left: 29% ;
margin-right: 0%;
width: -webkit-calc(70% - 50px);
width: -moz-calc(70% - 50px);
width: calc(70% - 50px);
font-weight: 500;
color: #fff;
border-color: #336699;
background-color: #337799;
}
.left {
content:url("https://i.imgur.com/rUsxo7j.png");
width:50px;
border-radius: 50%;
float:left;
}
.right{
content:url("https://i.imgur.com/5ALcyl3.png"); width:50px;
border-radius: 50%;
display: inline-block;
vertical-align:top;
}
</style>
<div id="container" style=" padding: 6px;
color: #fff;
border-color: #336699;
background-color: #337799;
display: flex;
justify-content: space-between;
margin-bottom:3px;">
<div>
<i class="fa fa-envelope fa-2x"></i>
</div>
<div>
<i class="fa fa-camera fa-2x"></i>
</div>
<div>
<i class="fa fa-comments fa-2x"></i>
</div>
<div>
<i class="fa fa-address-card fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-phone fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-list-ul fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-user-plus fa-2x" aria-hidden="true"></i>
</div>
</div>
<div><img class="left"/><div class="alert gray">
Hey, Cynthia I found a calculus problem on locating the tangent line equation from our practice exam that will be on our upcoming exam, and I will explain it to you in detail if you are still having problems with the concept?
</div></div>
<div><div class="alert blue">
Sure, you know I need help with this section because I just do not have the time for a tutor or the drop-in lab.
</div><img class="right"/></div>
</div></div>
<div><img class="left"/><div class="alert gray">
Question #1 Find the equation for the tangent line to the graph of the function 5x^2-10x+20 at the point x=5, and find the formula for
the derivative of a function, using the limit-based definition of the derivative.
</div></div>
<div><div class="alert blue">
How do I use the definition of the derivative in helping with locating the tangent line?
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
To use the definition of the derivative you have to follow this step:
Use the formula for determining the limit as h approaches zero, for the equation 5x^2-10x+20 for determining the tangent line which is:
$f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}$
$f'(x)=\lim_{h \to 0}\frac{[5(x+h)^2+10(x+h)-20]-[5x^2+10x+20]}{h}$
$f'(x)=\lim_{h \to 0}\frac{[5(x^2+2xh+h^2)-10(x+h)+20]-(5x^2+10x+20)}{h}$
$f'(x)=\lim_{h \to 0}\frac{(5x^2+10xh+5h^2-10x-10h+20-5x^2+10x-20)}{h}$
$f'(x)=\lim_{h \to 0}\frac{(10xh+5h^2-10h)}{h}$
$f'(x)=\lim_{h \to 0}\frac{h(10x+5h-10)}{h}$
$f'(x)={10x+5h-10}$
$f'(x)=10x+5(0)-10$
$f'(x)=10x-10$
Now that we have the derivative of the original formula, next we have to find the tangent line for the function 5x^2-10x+20. First we have to evaluate the original function at the point x=5 for our b component of our linear formula as follows;
$b=5x^2-10x+20$
$b=(5(5)^2+10(5)+20)$
$b=95$
Next, we have to evaluate the derivative at the point x=5 for our slope or m-value to our linear formula.
$m=10x-10$
$m=10(5)-10$
$m=40$
Plugging your values into the formula of y=mx+b is your final step in creating your linear formula and now you can plug in any value near the point x=5 for an approximation:
y=40(x-5)+95
The formula above could be used to estimate a linear approximation for any give point close to x=5, so Cynthia you would chose a number and plug it into the x-value of the linear formula.
</div></div>
<div><div class="alert blue">
Okay, thank you for simplifying for me how to find a tangent line when given a function and a value for x and on how to derive the formula. from the function at any point.
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
No problem and we will talk after class to discuss our exam results.
</div></div>
<div><div class="alert blue">
Okay, and thanks for everything.
</div><img class="alert blue">
---
To submit this assignment click on the Publish button . Then copy the url of the final document and submit it in Canvas.