# 980. Unique Paths III (hard)
###### tags: `online_judge`, `python3`
地圖尋路題,從```1```走到```2```,過程必須把所有的```0```都走過有且只有 1 次。
單純的 DFS 尋路即可解開。在開始尋路前記錄```0```的數量。在遞迴過程中以遞迴深度作為是否走過所有```0```的判斷。注意離開該次遞迴時必須把走過該點的標記恢復(本題走過即標記為```-1```)。
小技巧:
地圖題很多時候可以在邊緣圍上一層不可進入的標記,以省去處理邊緣問題的時間。
例如:
```
1 0 0
0 -1 0
0 0 2
```
可修改為:
```
-1 -1 -1 -1 -1
-1 1 0 0 -1
-1 0 -1 0 -1
-1 0 0 2 -1
-1 -1 -1 -1 -1
```
這樣就可以在整個尋路過程中使用同一套邏輯了。
---
### 題目
```
On a 2-dimensional grid, there are 4 types of squares:
1 represents the starting square. There is exactly one starting square.
2 represents the ending square. There is exactly one ending square.
0 represents empty squares we can walk over.
-1 represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Example 1:
Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
Note:
1 <= grid.length * grid[0].length <= 20
```
---
### 解答
```python=
class Solution:
zero_count = 0
max_x = 0
max_y = 0
path_count = 0
def get_info(self, grid):
s_x = -1
s_y = -1
zero_count = 0
for i in range(self.max_y):
for j in range(self.max_x):
if grid[i][j] == 0:
zero_count += 1
elif grid[i][j] == 1:
s_x = j
s_y = i
return s_x,s_y,zero_count
def find_path(self, grid, x, y, count):
grid[y][x] = -1
if grid[y][x+1] == 0:
self.find_path(grid,x+1,y,count+1)
elif grid[y][x+1] == 2 and count == self.zero_count:
self.path_count += 1
if grid[y][x-1] == 0:
self.find_path(grid,x-1,y,count+1)
elif grid[y][x-1] == 2 and count == self.zero_count:
self.path_count += 1
if grid[y+1][x] == 0:
self.find_path(grid,x,y+1,count+1)
elif grid[y+1][x] == 2 and count == self.zero_count:
self.path_count += 1
if grid[y-1][x] == 0:
self.find_path(grid,x,y-1,count+1)
elif grid[y-1][x] == 2 and count == self.zero_count:
self.path_count += 1
grid[y][x] = 0
return
def uniquePathsIII(self, grid) :
self.path_count = 0
self.max_x = len(grid[0])
self.max_y = len(grid)
for i in range(self.max_y):
grid[i].insert(0,-1)
grid[i].append(-1)
bound = [-1 for n in range(self.max_x + 2)]
grid.insert(0,bound)
grid.append(bound)
self.max_x += 2
self.max_y += 2
s_x, s_y, self.zero_count = self.get_info(grid)
self.find_path(grid, s_x, s_y, 0)
return self.path_count
a = Solution()
a.uniquePathsIII([[1,0,0,0],[0,0,0,0],[0,0,2,-1]])
a.uniquePathsIII([[1,0,0,0],[0,0,0,0],[0,0,0,2]])
a.uniquePathsIII([[0,1],[2,0]])
```
---
### 成績

---