## UA DSI LLM Chatbots: *Chatur project* Space for project development :bookmark_tabs: :point_right: **Mithun's [Google Doc "Chatur" project description](https://docs.google.com/document/d/1nMcs8rgbAQn2xLBJsfFDEFkhEZkG7K5WIhh0INxdY4I/edit#heading=h.i8is4e2gnlxl)** ## Goals | Products | Description | | :-- | :-- | | Tutor - Bots | Lectures, Readings, HTML, .pptx, PDFs, .docx, .md, .csv, .txt | | Assistants | Course-work | | | Tutors | | | Knowledge-based | | Research - Q&A documents | PDFs, text | | Industry partners to UA | Knowledge-based | *** **Collection of readings posted in our Slack:** * [HuggingFace Chatbot Arena Leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard) * [Intel extension for transformers](https://github.com/intel/intel-extension-for-transformers) * [Langchain](https://blog.langchain.dev/langchain-chat/) * [LLM360: Fully Transparent Open-Source LLMs](https://www.llm360.ai/blog/introducing-llm360-fully-transparent-open-source-llms.html) * [Practical Tips for Finetuning LLMs Using LoRA (Low-Rank Adaptation)](https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms#:~:text=Low%2Drank%20adaptation%20(LoRA),technique%20worth%20familiarizing%20oneself%20with.) * [Microsoft promptbase](https://github.com/microsoft/promptbase) * [NVIDIA NeMo Framework](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/) * [NVIDIA NeMo Guardrails](https://github.com/NVIDIA/NeMo-Guardrails) * [oobabooga](https://github.com/oobabooga) * [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui/wiki) * [Panel chat examples](https://holoviz-topics.github.io/panel-chat-examples/) * [MLflow LLM Evaluate](https://mlflow.org/docs/latest/llms/llm-evaluate/index.html) * [PromtEngineering/localGPT](https://github.com/PromtEngineer/localGPT) * [Retrieval-Augmented Generation (RAG) demo](https://github.com/outerbounds/rag-demo) * [Retrieval-Augmented Generation: How to Use Your Data to Guide LLMs](https://outerbounds.com/blog/retrieval-augmented-generation/) * [Retrieval-Augmented Generation Chatbot, How to build a...](https://www.anaconda.com/blog/how-to-build-a-retrieval-augmented-generation-chatbot) *** ### Other references... * [Big Bench. Beyond the Imitation Game collaborative benchmark](https://github.com/google/BIG-bench) * [LoRA (Low-Rank Adaptation of Large Language Models)](https://huggingface.co/docs/diffusers/main/en/training/lora) * [RAG (Retrieval-Augmented Generation)](https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/), [[opt 2]](https://www.oracle.com/artificial-intelligence/generative-ai/retrieval-augmented-generation-rag/) * [Igniting Language Intelligence: The Hitchhiker's Guide From Chain-of-Thought Reasoning to Language Agents](https://github.com/Zoeyyao27/CoT-Igniting-Agent?tab=readme-ov-file#igniting-language-intelligence-the-hitchhikers-guide-from-chain-of-thought-reasoning-to-language-agents) * [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) *** *** Created: 12-13-2023 Updated: 12-13-2023