Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: green; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url(https://statici.behindthevoiceactors.com/behindthevoiceactors/_img/chars/michelangelo-rise-of-the-teenage-mutant-ninja-turtles-5.89.jpg); width:50px; border-radius: 50%; float:left; } .right{ content:url(https://statici.behindthevoiceactors.com/behindthevoiceactors/_img/chars/donatello-rise-of-the-teenage-mutant-ninja-turtles-2.89.jpg); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hey bro! Mind helping me out with this math stuff (assignment)? it looks tricky </div></div> <div><div class="alert blue"> If you want I can help explain it to you. Which problem are you stuck on? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> It's problem #2. Part a) write out the limit definition of the derivative f'(x) of a function f(x) Part b) for the function f(x)=2x^2+1, find the exact formula for f'(x). Use only the definition for the derivative. </div></div> <div><img class="left"/><div class="alert gray"> How do I do this problem??? </div></div> <div><div class="alert blue"> So what this question is asking you to do is to compute the derivative using a single point to find the formula of f'(a). Like this you can find f'(a) at any point of 'a' </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Could you show me the steps pls? </div></div> <div><div class="alert blue"> K. The first thing we have to do is take the derivative of f(x) in order to get the formula of f'(x).Do you know how that formula looks? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Is it this one?$$lim(h->0)f'(x)={\frac{f(x+h)-f(x)}{h}}.$$ </div></div> <div><div class="alert blue"> Exactly! That's part a) right there.Now for part b) we are trying to find the derivative of f'(x) and we are already given 'X' which we just plug into the derivative formula. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Ok I think I'm starting to get it but how do we find f'(x) </div></div> <div><div class="alert blue"> Mikey, you just plug in your f(x) equation into every x in the derivative formula to get f'(x) </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> So like dis?? $$f'(x)={\frac{(2(x+h)^2+1)-(2x^2+1)}{h}}.$$ </div></div> <div><div class="alert blue"> Great, now foil the 2(x+h)^2 by mutipling 2(x+h)(x+h) and the rest is simple. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> So like dis?? $$f'(x)={\frac{(2(x+h)(x+h)+1)-(2x^2+1)}{h}}$$ $$={\frac{(2(x^2+2xh+h^2)+1)-(2x^2+1)}{h}}$$ $$={\frac{(2x^2+4xh+2h^2+1)-(2x^2+1)}{h}}$$ $$={\frac{(2x^2+4xh+2h^2+1-2x^2-1)}{h}}$$ then i cancel any opposites to get: $$={\frac{4xh+2h^2}{h}}$$ lastly I divid it all by h to get: $$={4x+2h}$$ What do I do after that?? :confused: </div></div> <div><div class="alert blue"> Now you just find the lim from h->0 by pluggin' in zero to the h </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Is this right bro? $$im (h->0)f'(x)= 4x+2(0)$$ $$=4x???$$ </div></div> <div><div class="alert blue"> Yup! And that's all you gotta do to solve for problem 2 :thumbsup: </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Thanks Donnie! You know you're my favorite brother right?! I luv u :kissing_closed_eyes: :rolling_on_the_floor_laughing: </div></div> <div><div class="alert blue"> Yeah yeah. Love you too bro :) </div><img class="right"/></div> To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.