# 7.2~7.4.4 ## 循環神經網路 循環神經網路在傳統神經網路中增加了「儲存/記憶單元」,讓神經元記住歷史資訊,使得循環神經網路可以記憶任意長度序列的的資訊。其中一個網路層,正向傳播計算公式如下: $$\mathbf{z_h^{(t)}} = \mathbf{x^{(t)}} \mathbf{W_x} + \mathbf{h^{(t-1)}} \mathbf{W_h} + b^{(t)}$$ $$\mathbf{h^{(t)}} = g_h(\mathbf{z_h^{(t)}})$$ $$\mathbf{z_f^{(t)}} = \mathbf{h^{(t)}} \mathbf{W_f} + b_f^{(t)}$$ $$\mathbf{f^{(t)}} = g_o(\mathbf{z_f^{(t)}})$$ 時間窗方法:短期記憶 循環神經網路:長期記憶 * 各種循環神經網路示意圖    ## 反向傳播 令 $$L = L(f^{(1)},y^{(1)}) + L(f^{(2)},y^{(2)}) + ... + L(f^{(n)},y^{(n)})=\sum_{t=1}^n L^{(t)}$$ $$L^{(t-)} = \sum_{t'=t}^n L^{(t)}$$ 反向傳播公式如下: $$\frac{\partial L^{(t-)}}{\partial \mathbf{h}^{(t-1)}} = \frac{\partial L^{(t)}}{\partial \mathbf{z}_h^{(t)}} \cdot \mathbf{W}_h^T$$ $$\frac{\partial L}{\partial \mathbf{W}_h} =\sum_{t=1}^n \mathbf{h}^{(t-1){^T}} \frac{\partial L^{(t-)}}{\partial \mathbf{z}_h^{(t)}}$$ $$\frac{\partial L}{\partial \mathbf{W}_x} =\sum_{t=1}^n \mathbf{x}^{(t)^{T}} \frac{\partial L^{(t-)}}{\partial \mathbf{z}_h^{(t)}}$$ 示意圖:  [循環神經網路程式](https://github.com/WingSyncAlgorithm/Book/blob/main/%E6%89%93%E4%B8%8B%E6%9C%80%E7%B4%AE%E5%AF%A6AI%E5%9F%BA%E7%A4%8E%E4%B8%8D%E4%BE%9D%E8%B3%B4%E5%A5%97%E4%BB%B6%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF/%E7%A8%8B%E5%BC%8F/7.4.1~7.4.4_%E5%BE%AA%E7%92%B0%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF.py) ## 問題 1.RNN的特色? 2.RNN的種類? 3.RNN遇到的問題? ### 答 1.用到過去的output 2.one to many,many to one,many to many 3.梯度消失(爆炸)問題
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up