For this miniproject you will be estimating the area under the curve $$ f\left(x\right)=\left|\frac{10x}{x^2+1}\sin \left(x\right)\right|+\frac{4}{x^2+1} $$ from $x=1$ to $x=10$. Before you start, enter the function $f(x)$ into Desmos so that you can refer to it later. 1. Evaluate $R_3$ using Desmos. Right points 4,7,10 are used. =3[f(4)+f(7)+f(10)] =3[3.593] =10.779 2. Evaluate $M_3$ using Desmos The points used are the same as before and 2.5, 5.5, 8.5 as the middle points. =3[2.61+1.36+.981] =3[4.965] =14.895 4. Evaluate $L_9$ using Desmos. The partaion points are 1-10 and the left 1-9 9$\sum$i=1 f(xi)deltaX= 19.399 4. Evaluate $R_{100}$ using Desmos. You will probably want to use the $\sum$-notation capabilities of Desmos. I= n-1, i=0 $\sum$ f(s(i))*w I=16.274 5. Evaluate $R_{1000}$ using Desmos. I=n-1, i=0 $\sum$ f(s(i))*w =16.045 6. Write out an expression using a limit that will give the exact area under the curve $y=f(x)$ from $x=1$ to $x=10$. a=10,x=1 $\sum$ [10x/x^2+1 sinx +4/x^2+1]