# The content of Data science and Deep learning ## Deep learning - [Concept](/8yHR-4LAQ4mqYnlKJZUqMg) - [Computational Graph](/2ytOCBRrRdSt9Rx7pkDWDw) ## statistic ### Basic - [Introduction to Data](/DCx4G18NQ5uEXVkrJTkPAQ) - [Introduction to Probability](/lGbjt-2aQk6o6gKIXsZe6A) - [Type-1 and Type-2 error](https://hackmd.io/hYcO1tAHRKyX-nKWWpIE7Q) - [The Chi-Squared Test](/StOM1LZiSIivJavXvQ51sg) ### Bayes' theorem - [Bayes' theorem](/sWO7I6VlQUeoybX85PG14w?view) ### Regression - [Regression](/oTmB7lvAT4KNrowqA84WHQ) - [Logistic regression](/NbodF9C_QyesMvnOnvdPqA) ### Foundations for inference - [Inference](/iwKtXyoyTgGKQ0RlUtpZqQ) ### Machine Learning - [Ensemble learning](/gcU03FJYQSaTtPbi8q8bxg) ### Diagnostic - [Diagnostic model](/EUICpdVkQYuKLgP2QqvoVQ) ### Sample - [Sample](/oyP294krQ2a712k6ElQM_A) ## Application - [Intelligent factory](/RKY7jA-gR-qgR7Gz0KG_cQ) - [Factory 3.5](/LhFZpdYPSuaT5E0it0-EGg) ## Python Note - [FASTAPI](/U0cu-Y0hQqyHfCxFicdMhw) - [How deep of analysis](/GyEaEHcCQBecIfpip6A6sA) ## System Design - [SystemDesign001](MpgJpAgZQ4ar461t_HqB1Q?both=)