$\mathbf{r}_i(t) \simeq \mathbf{x}^{(diffusion)}(t) + \mathbf{v}_{com} t$ $av(k) = \frac{1}{n} \sum_i P_i^{(run k)}(t)$ $\sigma(av(k)) \simeq \frac{1}{\sqrt{100}} \sigma(P_i)$ --- $\sqrt{\frac{1}{N}\sum_i \left(\frac{\hat{y}_i - y_i}{\sigma_y}\right)^2}$ $\frac{1}{\sigma_y}\sqrt{\frac{1}{N}\sum_i \left(\hat{y}_i - y_i\right)^2}$ $\frac{VAR_\mathrm{err}}{VAR_\mathrm{tot}}$ $R^2$?