# Paper ###### tags: `賴` `CNN` `hyper-parameter` [Google Drive](https://drive.google.com/drive/u/1/folders/1CRvI2h55_kd-Vo_HSg0mdLZQWVgnZJhB) 1. [Optimization of hyper-parameter for CNN model using genetic algorithm](https://ieeexplore.ieee.org/document/8974762) ~~[Hyper-parameter Determination of CNN Classifier for Head Pose Estimation of Three Dimensional Degraded Face Images](https://ieeexplore.ieee.org/document/8982142)~~ 3. [Hyper-Parameter Selection in Convolutional Neural Networks Using Microcanonical Optimization Algorithm](https://ieeexplore.ieee.org/document/9037322) 4. [Speeding up the Hyperparameter Optimization of DeepConvolutional Neural Networks](https://www.worldscientific.com/doi/epdf/10.1142/S1469026818500086) 5. [Weighted Random Search for CNN Hyperparameter Optimization](https://arxiv.org/ftp/arxiv/papers/2003/2003.13300.pdf) 6. [Hyperparameter Optimization in Convolutional Neural Network using Genetic Algorithms ](https://pdfs.semanticscholar.org/c02f/877d81f487106cbd437f3f8d46b1496a897f.pdf) 7. [HYPER-PARAMETER OPTIMIZATION FOR CONVOLUTIONAL NEURAL NETWORK COMMITTEES BASED ON EVOLUTIONARY ALGORITHMS](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8297018) 8. [Hybrid MPSO-CNN: Multi-level Particle Swarm optimized hyperparameters of Convolutional Neural Network](https://www.sciencedirect.com/science/article/pii/S2210650221000249) 9. [Convolutional Neural Network Hyperparameter Tuning with Adam Optimizer for ECG Classification](https://ieeexplore.ieee.org/document/9259896) 10. [Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-free harmony search algorithm](https://www.sciencedirect.com/science/article/pii/S0030402618310167) 11. [CNN Optimization with a Genetic Algorithm](https://ieeexplore.ieee.org/document/9058307) 12. [Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification](https://ieeexplore.ieee.org/document/9075201) 13. [Hybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classification](https://www.sciencedirect.com/science/article/pii/S174680942030361X) 14. [ExperienceThinking: Constrained hyperparameter optimization based on knowledge and pruning](https://www.sciencedirect.com/science/article/pii/S0950705120307310) ## Parameter ### Conv2D **filters** *5 **kernel_size** *6 **strides=(1, 1)** *5 **padding='valid'** *3 data_format=None dilation_rate=(1, 1) groups=1 **activation=None** ~~*3~~ 4 use_bias=True kernel_initializer='glorot_uniform' bias_initializer='zeros' kernel_regularizer=None bias_regularizer=None activity_regularizer=None kernel_constraint=None bias_constraint=None ### MaxPooling2D **pool_size=(2, 2)** *4 **strides=None** *4 padding='valid' data_format=None ### Flatten data_format=None ### number of each layer **conv** *6 **pooling** *2 ### dropout **rate** *2 noise_shape=None seed=None ### dense **units** *3 **activation=None** ~~*4~~ 2 use_bias=True kernel_initializer='glorot_uniform' bias_initializer='zeros' kernel_regularizer=None bias_regularizer=None activity_regularizer=None kernel_constraint=None bias_constraint=None **batch_size** *3 steps_per_epochs **learning_rate** *5 epochs